Previous |  Up |  Next

Article

Title: Universal spaces for manifolds equipped with an integral closed $k$-form (English)
Author: Lê, Hông-Vân
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 5
Year: 2007
Pages: 443-457
Summary lang: English
.
Category: math
.
Summary: In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$. (English)
Keyword: closed $k$-form
Keyword: universal space
Keyword: $H$-principle
MSC: 53C10
MSC: 53C42
idZBL: Zbl 1199.53077
idMR: MR2381787
.
Date available: 2008-06-06T22:52:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108083
.
Reference: [1] Dold A., Thom R.: Quasifaserungen und unendliche symmetrische Produkte.Ann. of Math. 67 (2), (1958), 239–281. Zbl 0091.37102, MR 0097062
Reference: [2] Dold A., Puppe D.: Homologie nicht-additiver Funktoren. Anwendungen.Ann. Inst. Fourier (Grenoble) 11 (1961), 201–312. Zbl 0098.36005, MR 0150183
Reference: [3] Gromov M.: Partial Differential Relations.Springer-Verlag 1986, also translated in Russian, (1990), Moscow-Mir. Zbl 0651.53001, MR 0864505
Reference: [4] Gromov M.: .privat communication. Zbl 1223.37080
Reference: [5] Nash J.: The embedding problem for Riemannian manifolds.Ann. of Math. 63 (1), (1956), 20–63. MR 0075639
Reference: [6] Le H. V., Panák M., Vanžura J.: Manifolds admitting stable forms.Comment. Math. Univ. Carolin. (2007), to appear. Zbl 1212.53051, MR 2433628
Reference: [7] Thom R.: Quelques propriétés globales des variétés différentiables.Comment. Math. Helv. 28 (1954), 17–86. Zbl 0057.15502, MR 0061823
Reference: [8] Tischler D.: Closed 2-forms and an embedding theorem for symplectic manifolds.J. Differential Geom. 12 (1977), 229–235. Zbl 0386.58001, MR 0488108
.

Files

Files Size Format View
ArchMathRetro_043-2007-5_9.pdf 292.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo