Previous |  Up |  Next

Article

Title: On almost discrete space (English)
Author: Estaji, Ali Akbar
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 69-76
Summary lang: English
.
Category: math
.
Summary: Let $C(X)$ be the ring of real continuous functions on a completely regular Hausdorff space. In this paper an almost discrete space is determined by the algebraic structure of $C(X)$. The intersection of essential weak ideal in $C(X)$ is also studied. (English)
Keyword: essential weak ideal
Keyword: weak socle
Keyword: minimal ideal
Keyword: almost discrete space
Keyword: scattered space
Keyword: Stone-Čech compactification
Keyword: realcompactification
MSC: 13A30
MSC: 54C40
idZBL: Zbl 1212.54056
idMR: MR2431232
.
Date available: 2008-06-06T22:52:49Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/108097
.
Reference: [1] Azarpanah, F.: Essential ideals in $C(X)$.Period. Math. Hungar. 3 (12) (1995), 105–112. Zbl 0869.54021, MR 1609417, 10.1007/BF01876485
Reference: [2] Azarpanah, F.: Intersection of essential ideals in $C(X)$.Proc. Amer. Math. Soc. 125 (7) (1997), 2149–2154. Zbl 0867.54023, MR 1422843, 10.1090/S0002-9939-97-04086-0
Reference: [3] Dietrich, W.: On the ideals in $C(X)$.Trans. Amer. Math. Soc. 152 (1970), 61–77. MR 0265941, 10.1090/S0002-9947-1970-0265941-2
Reference: [4] Gillman, L., Jerison, M.: Rings of continuous functions.Springer-Verlag, 1979. MR 0407579
Reference: [5] Goodearl, K. R.: Von Neumann regular rings.Pitman, San Francisco, 1979. Zbl 0411.16007, MR 0533669
Reference: [6] Henriksen, M., Wilson, R. G.: Almost discrete SV-space.Topology Appl. 46 (1992), 89–99. Zbl 0791.54049, MR 1184107, 10.1016/0166-8641(92)90123-H
Reference: [7] Karamzadeh, O. A. S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. Zbl 0524.54013, MR 0766552
Reference: [8] Zand, M. R. Ahmadi: Strongly Blumberg space.5th Annual Iranian Math. Conf. January 26–29, Ahvaz, Iran, 2005.
Reference: [9] Zand, M. R. Ahmadi: Strongly Blumberg space.Ph.D. thesis, Shahid Chamran University of Ahvaz in Iran, 2006.
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_8.pdf 417.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo