Previous |  Up |  Next

Article

Title: On Deszcz symmetries of Wintgen ideal submanifolds (English)
Author: Petrović-Torgašev, Miroslava
Author: Verstraelen, Leopold
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 1
Year: 2008
Pages: 57-67
Summary lang: English
.
Category: math
.
Summary: It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde{M}^{n+m}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde{M}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde{M}^{n+m}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde{M}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde{M}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde{M}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20]. (English)
Keyword: submanifolds
Keyword: Wintgen inequality
Keyword: ideal submanifolds
Keyword: Deszcz symmetries
MSC: 53A10
MSC: 53A55
MSC: 53B20
MSC: 53B25
MSC: 53B35
MSC: 53C42
idZBL: Zbl 1212.53028
idMR: MR2431231
.
Date available: 2008-06-06T22:52:46Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/108096
.
Reference: [1] Belkhelfa, M., Deszcz, R., Glogowska, M., Hotlos, M., Kowalczyk, D., Verstraelen, L.: PDE’s, Submanifolds and Affine Differential Geometry.vol. 57, ch. On some type of curvature conditions, Banach Center Publ., 2002.
Reference: [2] Belkhelfa, M., Deszcz, R., Verstraelen, L.: Symmetry properties of $3-$dimensional D’Atri spaces.Kyungpook Math. J. 46 (2006), 367–376. Zbl 1120.53010, MR 2261390
Reference: [3] Bryant, R. L.: Some remarks on the geometry of austere manifolds.Bol. Soc. Brasil. Math. (N.S.) 21 (1991), 133–157. Zbl 0760.53034, MR 1139562, 10.1007/BF01237361
Reference: [4] Cartan, E.: Leçons sur la géométrie des espaces de Riemann.Gauthier-Villars, Paris, 1928. MR 0020842
Reference: [5] Chen, B. Y.: Geometry of Submanifolds.M. Dekker Publ. Co., New York, 1973. Zbl 0262.53036, MR 0353212
Reference: [6] Chen, B. Y.: Some conformal invariants of submanifolds and their applications.Boll. Un. Mat. Ital. 10 (1974), 380–385. Zbl 0321.53042, MR 0370436
Reference: [7] Chen, B. Y.: Geometry of Submanifolds and Its Applications.Science University of Tokyo, 1981. Zbl 0474.53050, MR 0627323
Reference: [8] Chen, B. Y.: Handbook of Differential Geometry.vol. 1, ch. Riemannian submanifolds, pp. 187–418, North-Holland, Elsevier, Amsterdam, 2000. MR 1736854
Reference: [9] Choi, T., Lu, Z.: On the DDVV conjecture and the comass in calibrated geometry (I).preprint. Zbl 1180.53055, MR 2429620
Reference: [10] Defever, F., Deszcz, R., Dhooghe, P., Verstraelen, L., Yaprak, S.: On Ricci pseudo-symmetric hypersurfaces in spaces of constant curvature.Results in Math. 27 (1995), 227–236. MR 1331096, 10.1007/BF03322827
Reference: [11] Deszcz, R.: On pseudosymmetric spaces.Bull. Soc. Math. Belg., Série A 44 (1992), 1–34. Zbl 0808.53012, MR 1315367
Reference: [12] Deszcz, R., Hotloś, M., Sentürk, Z.: On Ricci pseudosymmetric hypersurfaces in space forms.Demonstratio Math. 34 (2004), 203–214. Zbl 1055.53011, MR 2053116
Reference: [13] Deszcz, R., Verstraelen, L., Yaprak, S.: Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor.Chinese J. Math. 22 (1994), 139–157. Zbl 0817.53008, MR 1283222
Reference: [14] Deszcz, R., Yaprak, S.: Curvature properties of Cartan hypersurfaces.Colloq. Math. 67 (1994), 91–98. Zbl 0816.53032, MR 1292946
Reference: [15] Dillen, F., Fastenakels, J., van der Veken, J.: Three-dimensional submanifolds of $E^5$ with extremal normal curvature.preprint.
Reference: [16] Dillen, F., Fastenakels, J., van der Veken, J.: A pinching theorem for the normal scalar curvature of invariant submanifolds.J. Geom. Phys. 57 (2007), 833–840. Zbl 1108.53020, MR 2275193, 10.1016/j.geomphys.2006.06.006
Reference: [17] Guadalupe, I. V., Rodriguez, L.: Normal curvature of surfaces in space forms.Pacific J. Math. 106 (1983), 95–103. Zbl 0515.53044, MR 0694674, 10.2140/pjm.1983.106.95
Reference: [18] Haesen, S., Verstraelen, L.: Classification of the pseudo-symmetric space-times.J. Math. Phys. 45 (2004), 2343–2346. MR 2059697, 10.1063/1.1745129
Reference: [19] Haesen, S., Verstraelen, L.: Differential Geometry and Topology, Discrete and Computational Geometry.ch. Curvature and symmetries of parallel transport, pp. 197–238, IOS Press, NATO Science Series, 2005.
Reference: [20] Haesen, S., Verstraelen, L.: Properties of a scalar curvature invariant depending on two planes.Manuscripta Math. 122 (2007), 59–72. Zbl 1109.53020, MR 2287700, 10.1007/s00229-006-0056-0
Reference: [21] Jahanara, B., Haesen, S., Sentürk, Z., Verstraelen, L.: On the parallel transport of the Ricci curvatures.J. Geom. Phys. 57 (2007), 1771–1777. Zbl 1169.53016, MR 2330665, 10.1016/j.geomphys.2007.02.008
Reference: [22] Kowalski, O., Sekizawa, M.: Pseudo-symmetric spaces of constant type in dimension three-elliptic spaces.Rend. Mat. Appl. (7) 17 (1997), 477–512. Zbl 0889.53026, MR 1608724
Reference: [23] Levi-Civita, T.: Nozione di parallelismo in una varietá qualcunque e conseguente spezificazione geometrica della curvatura Riemanniana.Rend. Circ. Mat. Palermo (2) 42 (1917), 173–204.
Reference: [24] Rouxel, B.: Sur une famille de A-surfaces d’un espace euclidien $E^4$.Proc. 10. Österreichischer Mathematiker Kongress, Insbruck, 1981.
Reference: [25] Schouten, J. A.: Die direkte Analysis zur neueren Relativitätstheorie.Verhandelingen Kon. Akad. van Wetenschappen te Amsterdam, Sectie I 12 (6) (1918), 1–95.
Reference: [26] Smet, P. J. De, Dillen, F., Verstraelen, L., Vrancken, L.: A pointwise inequality in submanifold theory.Arch. Math. (Basel) 35 (1999), 115–128. Zbl 1054.53075, MR 1711669
Reference: [27] Suceavă, B. D.: DDVV conjecture.preprint.
Reference: [28] Szabó, Z.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. I. The local version.J. Differential Geom. 17 (1982), 531–582. MR 0683165
Reference: [29] Szabó, Z.: Structure theorems on Riemannian spaces satisfying $R(X,Y)\cdot R=0$. II. The global version.Geom. Dedicata 19 (1985), 65–108. MR 0797152, 10.1007/BF00233102
Reference: [30] Thurston, W. M.: Three-dimensional Geometry and Topology.vol. 1, Princeton University Press, 1997. Zbl 0873.57001, MR 1435975
Reference: [31] Verstraelen, L.: Geometry and Topology of Submanifolds.vol. VI, ch. Comments on the pseudo-symmetry in the sense of Deszcz, pp. 119–209, World Sci. Publ. Co., Singapore, 1994. Zbl 0832.00044, MR 1315102
Reference: [32] Wintgen, P.: Sur l’inégalité de Chen-Willmore.C. R. Acad. Sci. Paris 288 (1979), 993–995. Zbl 0421.53003, MR 0540375
.

Files

Files Size Format View
ArchMathRetro_044-2008-1_7.pdf 470.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo