Article
Keywords:
fuzzy set; fuzzy order relation; complete lattices; monotone map; fixed point
Summary:
A fuzzy version of Tarski’s fixpoint Theorem for fuzzy monotone maps on nonempty fuzzy compete lattice is given.
References:
                        
[2] Beg I.: 
Fixed points of fuzzy multivalued mappings with values in fuzzy orders sets. J. Fuzzy Math. 6(1) (1998), 127–131.  
MR 1609883 
[3] Beg I.: 
Fixed points of expansive mapping on fuzzy preordered sets. J. Fuzzy Math. 7(2) (1999), 746–749.  
MR 1697747 
[4] Billot A.: 
Economic theory of fuzzy equilibria. Lecture Notes in Econom. and Math. Systems 373, Springer-Verlag, Berlin 1992.  
MR 1227785 | 
Zbl 0758.90008 
[5] Fang J. X.: 
On fixed point theorems in fuzzy metric spaces. Fuzzy Sets and Systems 46 (1992), 107–113.  
MR 1153595 | 
Zbl 0766.54045 
[6] Hadzic O.: 
Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces. Fuzzy Sets and Systems 29 (1989), 115–125.  
MR 0976292 
[7] Heilpern S.: 
Fuzzy mapping and fixed point theorem. J. Math. Anal. Appl. 83 (1981), 566–569.  
MR 0641351 
[8] Tarski A.: 
A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (1955), 285–309.  
MR 0074376 | 
Zbl 0064.26004