Previous |  Up |  Next

Article

Title: Automorphisms of concrete logics (English)
Author: Navara, Mirko
Author: Tkadlec, Josef
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 15-25
.
Category: math
.
Summary: The main result of this paper is Theorem 3.3: Every concrete logic (i.e., every set-representable orthomodular poset) can be enlarged to a concrete logic with a given automorphism group and with a given center. Since every sublogic of a concrete logic is concrete, too, and since not every state space of a (general) quantum logic is affinely homeomorphic to the state space of a concrete logic [8], our result seems in a sense the best possible. Further, we show that every group is an automorphism group of a concrete lattice logic and, on the other hand, we prove that this is not true for Boolean logics with a dense center. As a technical tool for pursuing the latter type of problems, we investigate the correspondence between homomorphisms of concrete logics and pointwise mappings of their domain. We prove that in a suitable topological representation of concrete logics, every automorphism is carried by a homeomorphism. (English)
Keyword: orthomodular lattice
Keyword: quantum logic
Keyword: concrete logic
Keyword: set representation
Keyword: automorphism group of a logic
Keyword: state space
MSC: 03G12
MSC: 06C15
MSC: 81C10
MSC: 81P10
idZBL: Zbl 0742.06008
idMR: MR1118285
.
Date available: 2008-10-09T13:10:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116938
.
Reference: [1] Groot J. de, McDowell R.H.: Autohomeomorphism groups of 0-dimensional spaces.Compositio Math. 15 (1963), 203-209. MR 0154267
Reference: [2] Gudder S.P.: Stochastic Methods in Quantum Mechanics.North Holland, New York, 1979. Zbl 0439.46047, MR 0543489
Reference: [3] Iturrioz L.: A representation theory for orthomodular lattices by means of closure spaces.Acta Math. Hung. 47 (1986), 145-151. Zbl 0608.06008, MR 0836405
Reference: [4] Kallus M., Trnková V.: Symmetries and retracts of quantum logics.Int. J. Theor. Phys. 26 (1987), 1-9. MR 0890206
Reference: [5] Kalmbach G.: Orthomodular Lattices.Academic Press, London, 1983. Zbl 0554.06009, MR 0716496
Reference: [6] Kalmbach G.: Automorphism groups of orthomodular lattices.Bull. Austral. Math. Soc. 29 (1984), 309-313. Zbl 0538.06009, MR 0748724
Reference: [7] Navara M.: The independence of automorphism groups, centres and state spaces in quantum logics.to appear.
Reference: [8] Navara M.: An alternative proof of Shultz's theorem.to appear.
Reference: [9] Navara M., Pták P.: Almost Boolean orthomodular posets.J. Pure Appl. Algebra 60 (1989), 105-111. MR 1014608
Reference: [10] Navara M., Rogalewicz V.: The pasting constructions for orthomodular posets.to appear in Math. Nachrichten. Zbl 0767.06009, MR 1138377
Reference: [11] Pták P.: Logics with given centres and state spaces.Proc. Amer. Math. Soc. 88 (1983), 106-109. MR 0691287
Reference: [12] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics.Kluwer, 1991 (to appear). MR 1176314
Reference: [13] Pultr A., Trnková V.: Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories.North-Holland, Amsterdam, 1980 and Academia, Praha, 1980. MR 0563525
Reference: [14] Sikorski R.: Boolean Algebras.Springer-Verlag, Berlin, 1969. Zbl 0191.31505, MR 0126393
Reference: [15] Tkadlec J.: Set representations of orthoposets.Proc. 2-nd Winter School on Measure Theory (Liptovský Ján, 1990), Slovak Academy of Sciences, Bratislava, 1990. Zbl 0777.06009, MR 1118430
Reference: [16] Zierler N., Schlessinger M.: Boolean embeddings of orthomodular sets and quantum logic.Duke Math. J. 32 (1965), 251-262. MR 0175520
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_3.pdf 268.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo