Previous |  Up |  Next

Article

Title: Non-perfect rings and a theorem of Eklof and Shelah (English)
Author: Trlifaj, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 27-32
.
Category: math
.
Summary: We prove a stronger form, $A^+$, of a consistency result, $A$, due to Eklof and Shelah. $A^+$ concerns extension properties of modules over non-left perfect rings. We also show (in ZFC) that $A$ does not hold for left perfect rings. (English)
Keyword: perfect ring
Keyword: Ext
Keyword: uniformization
MSC: 03E55
MSC: 16A50
MSC: 16A51
MSC: 16D40
MSC: 16L30
idZBL: Zbl 0742.16001
idMR: MR1118286
.
Date available: 2008-10-09T13:10:48Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116939
.
Reference: [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Springer, New York 1974. Zbl 0765.16001, MR 0417223
Reference: [2] Eklof P.C.: Set Theoretic Methods in Homological Algebra and Abelian Groups.Montreal Univ. Press, Montreal 1980. Zbl 0669.03022, MR 0565449
Reference: [3] Eklof P.C., Shelah S.: On Whitehead modules.preprint 1990. Zbl 0743.16004, MR 1127077
Reference: [4] Shelah S.: Diamonds, uniformization.J. Symbolic Logic 49 (1984), 1022-1033. Zbl 0598.03044, MR 0771774
Reference: [5] Trlifaj J.: Von Neumann regular rings and the Whitehead property of modules.Comment. Math. Univ. Carolinae 31 (1990), 621-625. Zbl 0728.16005, MR 1091359
Reference: [6] Trlifaj J.: Associative Rings and the Whitehead Property of Modules.R. Fischer, Munich 1990. Zbl 0697.16024, MR 1053965
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_4.pdf 194.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo