Previous |  Up |  Next

Article

Title: Locally convex topologies in linear orthogonality spaces (English)
Author: Kąkol, Jerzy
Author: Sorjonen, Pekka
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 33-37
.
Category: math
.
Summary: In this paper, we investigate the existence and characterizations of locally convex topologies in a linear orthogonality space. (English)
Keyword: locally convex space
Keyword: orthogonality space
Keyword: Hahn--Banach extension property
MSC: 46A03
MSC: 46A15
MSC: 46A16
MSC: 46A22
MSC: 46C99
idZBL: Zbl 0749.46002
idMR: MR1118287
.
Date available: 2008-10-09T13:10:52Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116940
.
Reference: [1] Kąkol J.: Basic sequences and non locally convex topological vector spaces.Rend. Circ. Mat. Palermo (2) 36 (1987), 95-102. MR 0944650
Reference: [2] Kalton N.J., Peck N.T., Roberts J.W.: An F-space sampler.vol. 89 of London Mathematical Society Lecture Note Series, Cambridge University Press, 1984. Zbl 0556.46002, MR 0808777
Reference: [3] Piziak R.: Mackey closure operators.J. London Math. Soc. 4 (1971), 33-38. Zbl 0253.06001, MR 0295977
Reference: [4] Piziak R.: Sesquilinear forms in infinite dimensions.Pacific J. Math. 43 (2) (1972), 475-481. Zbl 0237.46007, MR 0318850
Reference: [5] Sorjonen P.: Lattice-theoretical characterizations of inner product spaces.Studia Sci. Math. Hungarica 19 (1984), 141-149. Zbl 0588.46019, MR 0787796
Reference: [6] Sorjonen P.: Hahn-Banach extension properties in linear orthogonality spaces.Funct. Approximatio, Comment. Math., to appear. Zbl 0793.46007, MR 1201711
Reference: [7] Wilbur W.J.: Quantum logic and the locally convex spaces.Trans. Amer. Math. Soc. 207 (1975), 343-360. Zbl 0289.46019, MR 0367607
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_5.pdf 177.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo