Previous |  Up |  Next

Article

Title: On FU($p$)-spaces and $p$-sequential spaces (English)
Author: Garcia-Ferreira, Salvador
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 161-171
.
Category: math
.
Summary: Following Kombarov we say that $X$ is $p$-sequential, for $p\in\alpha^\ast$, if for every non-closed subset $A$ of $X$ there is $f\in{}^\alpha X$ such that $f(\alpha)\subseteq A$ and $\bar f(p)\in X\backslash A$. This suggests the following definition due to Comfort and Savchenko, independently: $X$ is a {\rm FU($p$)}-space if for every $A\subseteq X$ and every $x\in A^{-}$ there is a function $f\in {}^\alpha A$ such that $\bar f(p)=x$. It is not hard to see that $p \leq {\,_{\operatorname{RK}}} q$ ($\leq {\,_{\operatorname{RK}}}$ denotes the Rudin--Keisler order) $\Leftrightarrow $ every $p$-sequential space is $q$-sequential $\Leftrightarrow $ every {\rm FU($p$)}-space is a {\rm FU($q$)}-space. We generalize the spaces $S_n$ to construct examples of $p$-sequential (for $p\in U(\alpha )$) spaces which are not {\rm FU($p$)}-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every $p$-sequential (Tychonoff) space is a {\rm FU($q$)}-space $\Leftrightarrow \forall \nu <\omega _1 (p^\nu \leq {\,_{\operatorname{RK}}} q)$, for $p,q \in \omega ^\ast $; and $S_n$ is a {\rm FU($p$)}-space for $p\in \omega ^\ast $ and $1<n<\omega \Leftrightarrow $ every sequential space $X$ with $\sigma (X)\leq n$ is a {\rm FU($p$)}-space $\Leftrightarrow \exists \{p_{n-2}, \dots , p_1\}\subseteq \omega ^\ast (p_{n-2}<{\,_{\operatorname{RK}}} \dots <{\,_{\operatorname{RK}}} p_1 <_{\,l} p)$; hence, it is independent with ZFC that $S_3$ is a {\rm FU($p$)}-space for all $p\in \omega ^\ast $. It is also shown that $|\beta (\alpha )\setminus U(\alpha )|\leq 2^\alpha \Leftrightarrow $ every space $X$ with $t(X)<\alpha $ is $p$-sequential for some $p\in U(\alpha ) \Leftrightarrow $ every space $X$ with $t(X)<\alpha $ is a {\rm FU($p$)}-space for some $p\in U(\alpha )$; if $t(X)\leq \alpha $ and $|X|\leq 2^\alpha $, then $ \exists p\in U(\alpha ) $ ($X$ is a {\rm FU($p$)}-space). (English)
Keyword: ultrafilter
Keyword: Rudin--Frol\'\i k order
Keyword: Rudin--Keisler order
Keyword: $p$-compact
Keyword: quasi $M$-compact
Keyword: strongly $M$-sequential
Keyword: weakly $M$-sequential
Keyword: $p$-sequential
Keyword: FU($p$)-space
Keyword: sequential
Keyword: $P$-point
MSC: 03E05
MSC: 04A20
MSC: 54A25
MSC: 54D55
MSC: 54D99
idZBL: Zbl 0789.54032
idMR: MR1118299
.
Date available: 2008-10-09T13:11:38Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116952
.
Reference: [A] Arhangel'skii A.V.: Martin's axiom and the construction of homogeneous bicompacta of countable tightness.Soviet Math. Dokl. 17 (1976), 256-260.
Reference: [AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767
Reference: [Ba] Balogh Z.: On compact Hausdorff spaces of countable tightness.Proc. Amer. Math. Soc. 105 (1989), 755-764. Zbl 0687.54006, MR 0930252
Reference: [Be] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [BM] Boldjiev B., Malykhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolinae 31 (1990), 23-25. Zbl 0696.54020, MR 1056166
Reference: [Bo] Booth D.D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371
Reference: [C] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893
Reference: [CN1] Comfort W.W., Negrepontis S.: On families of large oscillation.Fund. Math. 75 (1972), 275-290. Zbl 0235.54005, MR 0305343
Reference: [CN2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267
Reference: [F] Fedorčuk V.V.: Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory.Math. USSR Sbornik 28 (1976), 1-26.
Reference: [G1] Garcia-Ferreira S.: Various Orderings on the Space of Ultrafilters.Doctoral Dissertation, Wesleyan University, 1990.
Reference: [G2] Garcia-Ferreira S.: Three Orderings on $\beta (ømega)\setminus ømega $.preprint. Zbl 0791.54032, MR 1227550
Reference: [K1] Kombarov A.P.: On a theorem of A. H. Stone.Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007
Reference: [K2] Kombarov A.P.: Compactness and sequentiality with respect to a set of ultrafilters.Moscow Univ. Math. Bull. 40 (1985), 15-18. Zbl 0602.54025, MR 0814266
Reference: [M] Mills Ch.: An easier proof of the Shelah $P$-point independence theorem.Rapport 78, Wiskundig Seminarium, Free University of Amsterdam.
Reference: [Sa] Savchenko I.A.: Convergence with respect to ultrafilters and the collective normality of products.Moscow Univ. Math. Bull. 43 (1988), 45-47. Zbl 0687.54004, MR 0938072
Reference: [W] Wimmers E.L.: The Shelah $P$-point independence theorem.Israel J. Math. 43 (1982), 28-48. Zbl 0511.03022, MR 0728877
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_17.pdf 257.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo