Title:
|
On FU($p$)-spaces and $p$-sequential spaces (English) |
Author:
|
Garcia-Ferreira, Salvador |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
1 |
Year:
|
1991 |
Pages:
|
161-171 |
. |
Category:
|
math |
. |
Summary:
|
Following Kombarov we say that $X$ is $p$-sequential, for $p\in\alpha^\ast$, if for every non-closed subset $A$ of $X$ there is $f\in{}^\alpha X$ such that $f(\alpha)\subseteq A$ and $\bar f(p)\in X\backslash A$. This suggests the following definition due to Comfort and Savchenko, independently: $X$ is a {\rm FU($p$)}-space if for every $A\subseteq X$ and every $x\in A^{-}$ there is a function $f\in {}^\alpha A$ such that $\bar f(p)=x$. It is not hard to see that $p \leq {\,_{\operatorname{RK}}} q$ ($\leq {\,_{\operatorname{RK}}}$ denotes the Rudin--Keisler order) $\Leftrightarrow $ every $p$-sequential space is $q$-sequential $\Leftrightarrow $ every {\rm FU($p$)}-space is a {\rm FU($q$)}-space. We generalize the spaces $S_n$ to construct examples of $p$-sequential (for $p\in U(\alpha )$) spaces which are not {\rm FU($p$)}-spaces. We slightly improve a result of Boldjiev and Malykhin by proving that every $p$-sequential (Tychonoff) space is a {\rm FU($q$)}-space $\Leftrightarrow \forall \nu <\omega _1 (p^\nu \leq {\,_{\operatorname{RK}}} q)$, for $p,q \in \omega ^\ast $; and $S_n$ is a {\rm FU($p$)}-space for $p\in \omega ^\ast $ and $1<n<\omega \Leftrightarrow $ every sequential space $X$ with $\sigma (X)\leq n$ is a {\rm FU($p$)}-space $\Leftrightarrow \exists \{p_{n-2}, \dots , p_1\}\subseteq \omega ^\ast (p_{n-2}<{\,_{\operatorname{RK}}} \dots <{\,_{\operatorname{RK}}} p_1 <_{\,l} p)$; hence, it is independent with ZFC that $S_3$ is a {\rm FU($p$)}-space for all $p\in \omega ^\ast $. It is also shown that $|\beta (\alpha )\setminus U(\alpha )|\leq 2^\alpha \Leftrightarrow $ every space $X$ with $t(X)<\alpha $ is $p$-sequential for some $p\in U(\alpha ) \Leftrightarrow $ every space $X$ with $t(X)<\alpha $ is a {\rm FU($p$)}-space for some $p\in U(\alpha )$; if $t(X)\leq \alpha $ and $|X|\leq 2^\alpha $, then $ \exists p\in U(\alpha ) $ ($X$ is a {\rm FU($p$)}-space). (English) |
Keyword:
|
ultrafilter |
Keyword:
|
Rudin--Frol\'\i k order |
Keyword:
|
Rudin--Keisler order |
Keyword:
|
$p$-compact |
Keyword:
|
quasi $M$-compact |
Keyword:
|
strongly $M$-sequential |
Keyword:
|
weakly $M$-sequential |
Keyword:
|
$p$-sequential |
Keyword:
|
FU($p$)-space |
Keyword:
|
sequential |
Keyword:
|
$P$-point |
MSC:
|
03E05 |
MSC:
|
04A20 |
MSC:
|
54A25 |
MSC:
|
54D55 |
MSC:
|
54D99 |
idZBL:
|
Zbl 0789.54032 |
idMR:
|
MR1118299 |
. |
Date available:
|
2008-10-09T13:11:38Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116952 |
. |
Reference:
|
[A] Arhangel'skii A.V.: Martin's axiom and the construction of homogeneous bicompacta of countable tightness.Soviet Math. Dokl. 17 (1976), 256-260. |
Reference:
|
[AF] Arhangel'skii A.V., Franklin S.P.: Ordinal invariants for topological spaces.Michigan Math. J. 15 (1968), 313-320. MR 0240767 |
Reference:
|
[Ba] Balogh Z.: On compact Hausdorff spaces of countable tightness.Proc. Amer. Math. Soc. 105 (1989), 755-764. Zbl 0687.54006, MR 0930252 |
Reference:
|
[Be] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[BM] Boldjiev B., Malykhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolinae 31 (1990), 23-25. Zbl 0696.54020, MR 1056166 |
Reference:
|
[Bo] Booth D.D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371 |
Reference:
|
[C] Comfort W.W.: Ultrafilters: some old and some new results.Bull. Amer. Math. Soc. 83 (1977), 417-455. MR 0454893 |
Reference:
|
[CN1] Comfort W.W., Negrepontis S.: On families of large oscillation.Fund. Math. 75 (1972), 275-290. Zbl 0235.54005, MR 0305343 |
Reference:
|
[CN2] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[F] Fedorčuk V.V.: Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory.Math. USSR Sbornik 28 (1976), 1-26. |
Reference:
|
[G1] Garcia-Ferreira S.: Various Orderings on the Space of Ultrafilters.Doctoral Dissertation, Wesleyan University, 1990. |
Reference:
|
[G2] Garcia-Ferreira S.: Three Orderings on $\beta (ømega)\setminus ømega $.preprint. Zbl 0791.54032, MR 1227550 |
Reference:
|
[K1] Kombarov A.P.: On a theorem of A. H. Stone.Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007 |
Reference:
|
[K2] Kombarov A.P.: Compactness and sequentiality with respect to a set of ultrafilters.Moscow Univ. Math. Bull. 40 (1985), 15-18. Zbl 0602.54025, MR 0814266 |
Reference:
|
[M] Mills Ch.: An easier proof of the Shelah $P$-point independence theorem.Rapport 78, Wiskundig Seminarium, Free University of Amsterdam. |
Reference:
|
[Sa] Savchenko I.A.: Convergence with respect to ultrafilters and the collective normality of products.Moscow Univ. Math. Bull. 43 (1988), 45-47. Zbl 0687.54004, MR 0938072 |
Reference:
|
[W] Wimmers E.L.: The Shelah $P$-point independence theorem.Israel J. Math. 43 (1982), 28-48. Zbl 0511.03022, MR 0728877 |
. |