Previous |  Up |  Next

Article

Title: N-compact frames (English)
Author: Schlitt, Greg M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 1
Year: 1991
Pages: 173-187
.
Category: math
.
Summary: We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification. (English)
Keyword: frame
Keyword: locale
Keyword: complete Heyting algebra
Keyword: $\Bbb N$-compact
MSC: 06A23
MSC: 06D20
MSC: 06D99
MSC: 18B30
MSC: 54A05
MSC: 54D20
idZBL: Zbl 0747.06009
idMR: MR1118300
.
Date available: 2008-10-09T13:11:41Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116953
.
Reference: [Ba] Banaschewski B.: Über nulldimensionale Räume.Math. Nachr. 13 (1955), 129-140. Zbl 0064.41303, MR 0086287
Reference: [Ba1] Banaschewski B.: Universal 0-dimensional compactifications.preprint.
Reference: [Ba,Mu] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I.Houston Journal of Mathematics 6 (1980), 301-311. Zbl 0473.54026, MR 0597771
Reference: [Ch] Chew K.P.: A characterization of $\Bbb N$-compact spaces.Proc. Amer. Math. Soc. 26 (1970), 679-682. MR 0267534
Reference: [Do,St] Dowker C.H., Strauss D.: Sums in the category of frames.Houston Journal of Mathematics 3 (1976), 17-32. Zbl 0332.54005, MR 0442900
Reference: [Ed,Oh] Eda K., Ohta H.: On Abelian Groups of Integer-Valued Continuous Functions, their $\Bbb Z$-duals and $\Bbb Z$-reflexivity.In Abelian Group Theory, Proc. of Third Conf., Oberwolfach. Gordon & Breach Science Publishers, 1987. MR 1011316
Reference: [En,Mr] Engelking R., Mrówka S.: On E-compact spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. MR 0097042
Reference: [He] Herrlich H.: $\frak E$-kompakte Räume.Math.Zeitschr. 96 (1967), 228-255. MR 0205218
Reference: [Je] Jech T.: Set Theory.Academic Press, New York-London, 1978. Zbl 1007.03002, MR 0506523
Reference: [Jo] Johnstone P.T.: The point of pointless topology.Bull. Amer. Math. Soc. 8 (1983), 41-53. Zbl 0499.54002, MR 0682820
Reference: [Jo1] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982. Zbl 0586.54001, MR 0698074
Reference: [Ke] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982
Reference: [Ma,Ve] Madden J., Vermeer J.: Lindelöf locales and realcompactness.Math. Proc. Camb. Phil. Soc. (1986), 437-480. Zbl 0603.54021
Reference: [Mr] Mrówka S.: Structures of continuous functions III.Verh. Nederl. Akad. Weten., Sectl I, 68 (1965), 74-82. MR 0237580
Reference: [Mr2] Mrówka S.: Structures of continuous functions VIII.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 563-566. MR 0313987
Reference: [Sc] Schlitt G.: The Lindelöf-Tychonoff theorem and choice principles.to appear. Zbl 0737.03024, MR 1104601
Reference: [St,Se] Steen L.A., Seebach J.A.: Counterexamples in Topology.Holt, Rinehart & Wilson, 1970 (Second edition by Springer-Verlag, 1978). Zbl 0386.54001, MR 0507446
Reference: [Ve] Vermeulen H.J.: Doctoral Diss..University of Sussex, 1987.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-1_18.pdf 269.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo