Title:
|
N-compact frames (English) |
Author:
|
Schlitt, Greg M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
1 |
Year:
|
1991 |
Pages:
|
173-187 |
. |
Category:
|
math |
. |
Summary:
|
We investigate notions of $\Bbb N$-compactness for frames. We find that the analogues of equivalent conditions defining $\Bbb N$-compact spaces are no longer equivalent in the frame context. Indeed, the closed quotients of frame `$\Bbb N$-cubes' are exactly 0-dimensional Lindelöf frames, whereas those frames which satisfy a property based on the ultrafilter condition for spatial $\Bbb N$-compactness form a much larger class, and better embody what `$\Bbb N$-compact frames' should be. This latter property is expressible without reference to maximal ideals or filters. We construct the co-reflections for both of the classes, (the `$\Bbb N$-compactifications'), which both restrict to the spatial $\Bbb N$-compactification. (English) |
Keyword:
|
frame |
Keyword:
|
locale |
Keyword:
|
complete Heyting algebra |
Keyword:
|
$\Bbb N$-compact |
MSC:
|
06A23 |
MSC:
|
06D20 |
MSC:
|
06D99 |
MSC:
|
18B30 |
MSC:
|
54A05 |
MSC:
|
54D20 |
idZBL:
|
Zbl 0747.06009 |
idMR:
|
MR1118300 |
. |
Date available:
|
2008-10-09T13:11:41Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116953 |
. |
Reference:
|
[Ba] Banaschewski B.: Über nulldimensionale Räume.Math. Nachr. 13 (1955), 129-140. Zbl 0064.41303, MR 0086287 |
Reference:
|
[Ba1] Banaschewski B.: Universal 0-dimensional compactifications.preprint. |
Reference:
|
[Ba,Mu] Banaschewski B., Mulvey C.: Stone-Čech compactification of locales I.Houston Journal of Mathematics 6 (1980), 301-311. Zbl 0473.54026, MR 0597771 |
Reference:
|
[Ch] Chew K.P.: A characterization of $\Bbb N$-compact spaces.Proc. Amer. Math. Soc. 26 (1970), 679-682. MR 0267534 |
Reference:
|
[Do,St] Dowker C.H., Strauss D.: Sums in the category of frames.Houston Journal of Mathematics 3 (1976), 17-32. Zbl 0332.54005, MR 0442900 |
Reference:
|
[Ed,Oh] Eda K., Ohta H.: On Abelian Groups of Integer-Valued Continuous Functions, their $\Bbb Z$-duals and $\Bbb Z$-reflexivity.In Abelian Group Theory, Proc. of Third Conf., Oberwolfach. Gordon & Breach Science Publishers, 1987. MR 1011316 |
Reference:
|
[En,Mr] Engelking R., Mrówka S.: On E-compact spaces.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-436. MR 0097042 |
Reference:
|
[He] Herrlich H.: $\frak E$-kompakte Räume.Math.Zeitschr. 96 (1967), 228-255. MR 0205218 |
Reference:
|
[Je] Jech T.: Set Theory.Academic Press, New York-London, 1978. Zbl 1007.03002, MR 0506523 |
Reference:
|
[Jo] Johnstone P.T.: The point of pointless topology.Bull. Amer. Math. Soc. 8 (1983), 41-53. Zbl 0499.54002, MR 0682820 |
Reference:
|
[Jo1] Johnstone P.T.: Stone Spaces.Cambridge Studies in Advanced Mathematics 3, Cambridge University Press, 1982. Zbl 0586.54001, MR 0698074 |
Reference:
|
[Ke] Kelley J.L.: The Tychonoff product theorem implies the axiom of choice.Fund. Math. 37 (1950), 75-76. Zbl 0039.28202, MR 0039982 |
Reference:
|
[Ma,Ve] Madden J., Vermeer J.: Lindelöf locales and realcompactness.Math. Proc. Camb. Phil. Soc. (1986), 437-480. Zbl 0603.54021 |
Reference:
|
[Mr] Mrówka S.: Structures of continuous functions III.Verh. Nederl. Akad. Weten., Sectl I, 68 (1965), 74-82. MR 0237580 |
Reference:
|
[Mr2] Mrówka S.: Structures of continuous functions VIII.Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 20 (1972), 563-566. MR 0313987 |
Reference:
|
[Sc] Schlitt G.: The Lindelöf-Tychonoff theorem and choice principles.to appear. Zbl 0737.03024, MR 1104601 |
Reference:
|
[St,Se] Steen L.A., Seebach J.A.: Counterexamples in Topology.Holt, Rinehart & Wilson, 1970 (Second edition by Springer-Verlag, 1978). Zbl 0386.54001, MR 0507446 |
Reference:
|
[Ve] Vermeulen H.J.: Doctoral Diss..University of Sussex, 1987. |
. |