Previous |  Up |  Next

Article

Title: Sets invariant under projections onto one dimensional subspaces (English)
Author: Fitzpatrick, Simon
Author: Calvert, Bruce
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 227-232
.
Category: math
.
Summary: The Hahn--Banach theorem implies that if $m$ is a one dimensional subspace of a t.v.s. $E$, and $B$ is a circled convex body in $E$, there is a continuous linear projection $P$ onto $m$ with $P(B)\subseteq B$. We determine the sets $B$ which have the property of being invariant under projections onto lines through $0$ subject to a weak boundedness type requirement. (English)
Keyword: convex
Keyword: projection
Keyword: Hahn--Banach
Keyword: subsets of $\Bbb R^2$
MSC: 46A55
MSC: 52A07
MSC: 52A10
idZBL: Zbl 0756.52002
idMR: MR1137783
.
Date available: 2008-10-09T13:12:03Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116960
.
Related article: http://dml.cz/handle/10338.dmlcz/116961
Related article: http://dml.cz/handle/10338.dmlcz/118485
.
Reference: [1] Schaeffer H.H.: Topological Vector Spaces.MacMillan, N.Y., 1966. MR 0193469
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_4.pdf 192.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo