Previous |  Up |  Next

Article

Title: Sets invariant under projections onto two dimensional subspaces (English)
Author: Fitzpatrick, Simon
Author: Calvert, Bruce
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 233-239
.
Category: math
.
Summary: The Blaschke--Kakutani result characterizes inner product spaces $E$, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace $F$ there is a norm 1 linear projection onto $F$. In this paper, we determine which closed neighborhoods $B$ of zero in a real locally convex space $E$ of dimension at least 3 have the property that for every 2 dimensional subspace $F$ there is a continuous linear projection $P$ onto $F$ with $P(B)\subseteq B$. (English)
Keyword: inner product space
Keyword: two dimensional subspace
Keyword: projection
MSC: 46A03
MSC: 46A55
MSC: 46C05
MSC: 46C15
MSC: 52A07
MSC: 52A15
idZBL: Zbl 0756.46010
idMR: MR1137784
.
Date available: 2008-10-09T13:12:06Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116961
.
Related article: http://dml.cz/handle/10338.dmlcz/116960
Related article: http://dml.cz/handle/10338.dmlcz/118485
.
Reference: [1] Amir D.: Characterizations of Inner Product Spaces.Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986. Zbl 0617.46030, MR 0897527
Reference: [2] Calvert B., Fitzpatrick S.: Nonexpansive projections onto two dimensional subspaces of Banach spaces.Bull. Aust. Math. Soc. 37 (1988), 149-160. Zbl 0634.46013, MR 0926986
Reference: [3] Fitzpatrick S., Calvert B.: Sets invariant under projections onto one dimensional subspaces.Comment. Math. Univ. Carolinae 32 (1991), 227-232. Zbl 0756.52002, MR 1137783
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_5.pdf 201.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo