Title:
|
Sets invariant under projections onto two dimensional subspaces (English) |
Author:
|
Fitzpatrick, Simon |
Author:
|
Calvert, Bruce |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
2 |
Year:
|
1991 |
Pages:
|
233-239 |
. |
Category:
|
math |
. |
Summary:
|
The Blaschke--Kakutani result characterizes inner product spaces $E$, among normed spaces of dimension at least 3, by the property that for every 2 dimensional subspace $F$ there is a norm 1 linear projection onto $F$. In this paper, we determine which closed neighborhoods $B$ of zero in a real locally convex space $E$ of dimension at least 3 have the property that for every 2 dimensional subspace $F$ there is a continuous linear projection $P$ onto $F$ with $P(B)\subseteq B$. (English) |
Keyword:
|
inner product space |
Keyword:
|
two dimensional subspace |
Keyword:
|
projection |
MSC:
|
46A03 |
MSC:
|
46A55 |
MSC:
|
46C05 |
MSC:
|
46C15 |
MSC:
|
52A07 |
MSC:
|
52A15 |
idZBL:
|
Zbl 0756.46010 |
idMR:
|
MR1137784 |
. |
Date available:
|
2008-10-09T13:12:06Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/116961 |
. |
Related article:
|
http://dml.cz/handle/10338.dmlcz/116960 |
Related article:
|
http://dml.cz/handle/10338.dmlcz/118485 |
. |
Reference:
|
[1] Amir D.: Characterizations of Inner Product Spaces.Birkhäuser Verlag, Basel, Boston, Stuttgart, 1986. Zbl 0617.46030, MR 0897527 |
Reference:
|
[2] Calvert B., Fitzpatrick S.: Nonexpansive projections onto two dimensional subspaces of Banach spaces.Bull. Aust. Math. Soc. 37 (1988), 149-160. Zbl 0634.46013, MR 0926986 |
Reference:
|
[3] Fitzpatrick S., Calvert B.: Sets invariant under projections onto one dimensional subspaces.Comment. Math. Univ. Carolinae 32 (1991), 227-232. Zbl 0756.52002, MR 1137783 |
. |