Previous |  Up |  Next

Article

Title: The trace theorem $W^{2,1}_p(\Omega_T) \ni f \mapsto \nabla_{\!x} f \in W^{1-1/p,1/2-1/2p}_p(\partial \Omega_T)$ revisited (English)
Author: Weidemaier, Peter
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 307-314
.
Category: math
.
Summary: Filling a possible gap in the literature, we give a complete and readable proof of this trace theorem, which also shows that the imbedding constant is uniformly bounded for $T \downarrow 0$. The proof is based on a version of Hardy's inequality (cp. Appendix). (English)
Keyword: trace theory
Keyword: anisotropic Sobolev spaces
MSC: 34A47
MSC: 34B15
MSC: 34C11
MSC: 46E35
idZBL: Zbl 0770.46018
idMR: MR1137792
.
Date available: 2009-01-08T17:44:26Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116972
.
Reference: [A] Adams R.A.: Sobolev Spaces.New York - San Francisco - London: Academic Press 1975. Zbl 1098.46001, MR 0450957
Reference: [B/I/N] Besov O.V., Il'in V.P., Nikol'skii S.M.: Integral Representations of Functions and Imbedding Theorems, Vol. I..Wiley, 1978. Zbl 0392.46022
Reference: [I] Il'in V.P.: The properties of some classes of differentiable functions of several variables defined in an n-dimensional region.Transl. AMS 81 (1969), 91-256 Trudy Mat. Inst. Steklov 66 (1962), 227-363. MR 0153789
Reference: [I/S] Il'in V.P., Solonnikov V.A.: On some properties of differentiable functions of several variables.Transl. AMS 81 (1969), 67-90 Trudy Mat. Inst. Steklov 66 (1962), 205-226. MR 0152793
Reference: [K/J/F] Kufner A., John O., Fučik S.: Function Spaces.Leyden, Noordhoff Int. Publ. 1977. MR 0482102
Reference: [L/S/U] Ladyshenskaya O.A., Solonnikov V.A., Uralceva N.N: Linear and Quasilinear Equations of Parabolic Type.Am. Math. Soc., Providence, R.I. 1968.
Reference: [R] Rákosník J.: Some remarks to anisotropic Sobolev spaces.I. Beiträge zur Analysis 13 (1979), 55-68. MR 0536217
Reference: [W] Weidemaier P.: Local existence for parabolic problems with fully nonlinear boundary condition; an $L^p$-approach.to appear in Ann. mat. pura appl.
Reference: [W/Z] Wheeden R. L., Zygmund A.: Measure and Integral..New York - Basel: Dekker 1977. Zbl 0362.26004, MR 0492146
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_13.pdf 224.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo