| Title: | Existence and bifurcation results for a class  of nonlinear boundary value problems in $(0,\infty )$ (English) | 
| Author: | Rother, Wolfgang | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 32 | 
| Issue: | 2 | 
| Year: | 1991 | 
| Pages: | 297-305 | 
| . | 
| Category: | math | 
| . | 
| Summary: | We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u  \text{ in }  (0,\infty ), \, u(0)=0  \text{ and }  \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$. (English) | 
| Keyword: | nonlinear Dirichlet problem | 
| Keyword: | classical solution | 
| Keyword: | bifurcation point | 
| Keyword: | ordinary differential equation | 
| MSC: | 34A47 | 
| MSC: | 34B15 | 
| MSC: | 34C11 | 
| MSC: | 34C23 | 
| idZBL: | Zbl 0749.34016 | 
| idMR: | MR1137791 | 
| . | 
| Date available: | 2009-01-08T17:44:20Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/116971 | 
| . | 
| Reference: | [1] Adams R.A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957 | 
| Reference: | [2] Berger M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation.J. Funct. Analysis 9 (1972), 249-261. Zbl 0224.35061, MR 0299966 | 
| Reference: | [3] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials.J. Math. pures et appl. 58 (1979), 137-151. Zbl 0408.35025, MR 0539217 | 
| Reference: | [4] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.SpringerVerlag, Berlin, Heidelberg, New York, 1983. Zbl 1042.35002, MR 0737190 | 
| Reference: | [5] Hörmander L.: Linear Partial Differential Operators.Springer-Verlag, Berlin, Heidelberg, New York, 1976. MR 0404822 | 
| Reference: | [6] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues.Proc. London Math. Soc. (3) 45 (1982), 169-192. Zbl 0505.35010, MR 0662670 | 
| . |