Previous |  Up |  Next

Article

Title: Existence and bifurcation results for a class of nonlinear boundary value problems in $(0,\infty )$ (English)
Author: Rother, Wolfgang
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 2
Year: 1991
Pages: 297-305
.
Category: math
.
Summary: We consider the nonlinear Dirichlet problem $$ -u'' -r(x)|u|^\sigma u= \lambda u \text{ in } (0,\infty ), \, u(0)=0 \text{ and } \lim _{x\rightarrow \infty } u(x)=0, $$ and develop conditions for the function $r$ such that the considered problem has a positive classical solution. Moreover, we present some results showing that $\lambda =0$ is a bifurcation point in $W^{1,2} (0,\infty )$ and in $L^p(0,\infty )\, (2\leq p\leq \infty )$. (English)
Keyword: nonlinear Dirichlet problem
Keyword: classical solution
Keyword: bifurcation point
Keyword: ordinary differential equation
MSC: 34A47
MSC: 34B15
MSC: 34C11
MSC: 34C23
idZBL: Zbl 0749.34016
idMR: MR1137791
.
Date available: 2009-01-08T17:44:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/116971
.
Reference: [1] Adams R.A.: Sobolev Spaces.Academic Press, New York, 1975. Zbl 1098.46001, MR 0450957
Reference: [2] Berger M.S.: On the existence and structure of stationary states for a nonlinear Klein-Gordon equation.J. Funct. Analysis 9 (1972), 249-261. Zbl 0224.35061, MR 0299966
Reference: [3] Brezis H., Kato T.: Remarks on the Schrödinger operator with singular complex potentials.J. Math. pures et appl. 58 (1979), 137-151. Zbl 0408.35025, MR 0539217
Reference: [4] Gilbarg D., Trudinger N.S.: Elliptic Partial Differential Equations of Second Order.SpringerVerlag, Berlin, Heidelberg, New York, 1983. Zbl 1042.35002, MR 0737190
Reference: [5] Hörmander L.: Linear Partial Differential Operators.Springer-Verlag, Berlin, Heidelberg, New York, 1976. MR 0404822
Reference: [6] Stuart C.A.: Bifurcation for Dirichlet problems without eigenvalues.Proc. London Math. Soc. (3) 45 (1982), 169-192. Zbl 0505.35010, MR 0662670
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-2_12.pdf 214.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo