Previous |  Up |  Next

Article

Title: Approximate inverse systems of uniform spaces and an application of inverse systems (English)
Author: Charalambous, M. G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 551-565
.
Category: math
.
Summary: The fundamental properties of approximate inverse systems of uniform spaces are established. The limit space of an approximate inverse sequence of complete metric spaces is the limit of an inverse sequence of some of these spaces. This has an application to the dimension of the limit space of an approximate inverse system. A topologically complete space with $\operatorname{dim} \leq n$ is the limit of an approximate inverse system of metric polyhedra of $\operatorname{dim} \leq n$. A completely metrizable separable space with $\operatorname{dim} \leq n$ is the limit of an inverse sequence of locally finite polyhedra of $\operatorname{dim} \leq n$. Finally, a new proof is derived of the important equality $\operatorname{dim} = \operatorname{Ind}$ for metric spaces. (English)
Keyword: inverse systems
Keyword: approximate inverse systems
Keyword: uniform
Keyword: metric and complete spaces
Keyword: covering and inductive dimension
MSC: 54B25
MSC: 54B35
MSC: 54B99
MSC: 54E15
MSC: 54F45
idZBL: Zbl 0785.54016
idMR: MR1159801
.
Date available: 2009-01-08T17:46:58Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118433
.
Reference: [1] Charalambous M.G.: A new covering dimension function for uniform spaces.J. London Math. Soc. (2) 11 (1975), 137-143. Zbl 0306.54048, MR 0375258
Reference: [2] Charalambous M.G.: The dimension of inverse limits.Proc. Amer. 58 (1976), 289-295. Zbl 0348.54029, MR 0410696
Reference: [3] Engelking R.: General Topology.Polish Scientific Publishers, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [4] Engelking R.: Dimension Theory.Polish Scientific Publishers, Warsaw, 1978. Zbl 0401.54029, MR 0482697
Reference: [5] Freudenthal H.: Entwicklungen von Räumen und ihren Gruppen.Compositio Math. 4 (1937), 145-234. Zbl 0016.28001, MR 1556968
Reference: [6] Hurewicz W., Wallman H.: Dimension Theory.Princeton University Press, Princeton, 1941. Zbl 0036.12501, MR 0006493
Reference: [7] Isbell J.R.: Uniform spaces.Amer. Math. Soc. Surveys 12, 1964. Zbl 0124.15601, MR 0170323
Reference: [8] Mardešić S.: On covering dimension and inverse limits of compact spaces.Illinois J. Math. 4 (1960), 278-291. MR 0116306
Reference: [9] Mardešić S., Rubin L.R.: Approximate uniform spaces of compacta and covering dimension.Pacific J. Math. 138 (1989), 129-144. MR 0992178
Reference: [10] Nagami K.: Dimension Theory.Academic Press, New York and London, 1970. Zbl 0224.54060, MR 0271918
Reference: [11] Pasynkov B.A.: On polyhedra spectra and dimension of bicompacta and of bicompact groups (in Russian).Dokl. Akad. Nauk SSSR 121 (1958), 45-48. MR 0102058
Reference: [12] Pasynkov B.A.: Factorization theorems in dimension theory.Russian Math. Surveys 36 (1981), 175-209. Zbl 0487.54034, MR 0622723
Reference: [13] Pears A.R.: Dimension Theory of General Spaces.Cambridge Univ. Press, Cambridge, 1976. Zbl 0312.54001, MR 0394604
Reference: [14] Spanier E.H.: Algebraic Topology.McGraw-Hill Inc., New York, 1966. Zbl 0810.55001, MR 0210112
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_15.pdf 259.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo