Previous |  Up |  Next

Article

Title: Fixed points of asymptotically regular mappings in spaces with uniformly normal structure (English)
Author: Górnicki, Jarosław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 639-643
.
Category: math
.
Summary: It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that $$ \liminf _{n\rightarrow \infty } |\kern -0.8pt|\kern -0.8pt|T^n|\kern -0.8pt|\kern -0.8pt|< k, $$ where $|\kern -0.8pt|\kern -0.8pt|T|\kern -0.8pt|\kern -0.8pt|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$. (English)
Keyword: asymptotically regular mappings
Keyword: uniformly normal structure
Keyword: fixed points
MSC: 46B20
MSC: 47H10
idZBL: Zbl 0768.47027
idMR: MR1159810
.
Date available: 2009-01-08T17:47:47Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118443
.
Reference: [1] Browder F.E., Petryshyn V.W.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. AMS 72 (1966), 571-576. Zbl 0138.08202, MR 0190745
Reference: [2] Bynum W.L.: Normal structure coefficients for Banach spaces.Pacific J. Math. 86 (1980), 427-436. Zbl 0442.46018, MR 0590555
Reference: [3] Casini E., Maluta E.: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure.Nonlinear Anal., TMA 9 (1985), 103-108. Zbl 0526.47034, MR 0776365
Reference: [4] Daneš J.: On densifying and related mappings and their applications in nonlinear functional analysis.in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. MR 0361946
Reference: [5] Downing D.J., Turett B.: Some properties of the characteristic convexity relating to fixed point theory.Pacific J. Math. 104 (1983), 343-350. MR 0684294
Reference: [6] Edelstein M., O'Brien C.R.: Nonexpansive mappings, asymptotic regularity and successive approximations.J. London Math. Soc. (2) 17 (1978), 547-554. Zbl 0421.47031, MR 0500642
Reference: [7] Gillespie A.A., Williams B.B.: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure.Appl. Anal. 9 (1979), 121-124. MR 0539537
Reference: [8] Górnicki J.: A fixed point theorem for asymptotically regular mappings.to appear. MR 1201441
Reference: [9] Krüppel M.: Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen.Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. MR 0971250
Reference: [10] Lin P.K.: A uniformly asymptotically regular mapping without fixed points.Canad. Math. Bull. 30 (1987), 481-483. Zbl 0645.47050, MR 0919440
Reference: [11] Yu X.T.: On uniformly normal structure.Kexue Tongbao 33 (1988), 700-702. Zbl 0681.46020
Reference: [12] Yu X.T.: A geometrically aberrant Banach space with uniformly normal structure.Bull. Austral. Math. Soc. 38 (1988), 99-103. Zbl 0646.46017, MR 0968233
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_6.pdf 176.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo