Title:
|
Fixed points of asymptotically regular mappings in spaces with uniformly normal structure (English) |
Author:
|
Górnicki, Jarosław |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
32 |
Issue:
|
4 |
Year:
|
1991 |
Pages:
|
639-643 |
. |
Category:
|
math |
. |
Summary:
|
It is proved that: for every Banach space $X$ which has uniformly normal structure there exists a $k>1$ with the property: if $A$ is a nonempty bounded closed convex subset of $X$ and $T:A\rightarrow A$ is an asymptotically regular mapping such that $$ \liminf _{n\rightarrow \infty } |\kern -0.8pt|\kern -0.8pt|T^n|\kern -0.8pt|\kern -0.8pt|< k, $$ where $|\kern -0.8pt|\kern -0.8pt|T|\kern -0.8pt|\kern -0.8pt|$ is the Lipschitz constant (norm) of $T$, then $T$ has a fixed point in $A$. (English) |
Keyword:
|
asymptotically regular mappings |
Keyword:
|
uniformly normal structure |
Keyword:
|
fixed points |
MSC:
|
46B20 |
MSC:
|
47H10 |
idZBL:
|
Zbl 0768.47027 |
idMR:
|
MR1159810 |
. |
Date available:
|
2009-01-08T17:47:47Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118443 |
. |
Reference:
|
[1] Browder F.E., Petryshyn V.W.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. AMS 72 (1966), 571-576. Zbl 0138.08202, MR 0190745 |
Reference:
|
[2] Bynum W.L.: Normal structure coefficients for Banach spaces.Pacific J. Math. 86 (1980), 427-436. Zbl 0442.46018, MR 0590555 |
Reference:
|
[3] Casini E., Maluta E.: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure.Nonlinear Anal., TMA 9 (1985), 103-108. Zbl 0526.47034, MR 0776365 |
Reference:
|
[4] Daneš J.: On densifying and related mappings and their applications in nonlinear functional analysis.in: Theory of Nonlinear Operators (Proc. Summer School, October 1972, GDR), Akademie-Verlag, Berlin, 1974, 15-56. MR 0361946 |
Reference:
|
[5] Downing D.J., Turett B.: Some properties of the characteristic convexity relating to fixed point theory.Pacific J. Math. 104 (1983), 343-350. MR 0684294 |
Reference:
|
[6] Edelstein M., O'Brien C.R.: Nonexpansive mappings, asymptotic regularity and successive approximations.J. London Math. Soc. (2) 17 (1978), 547-554. Zbl 0421.47031, MR 0500642 |
Reference:
|
[7] Gillespie A.A., Williams B.B.: Fixed point theorem for nonexpansive mappings on Banach spaces with uniformly normal structure.Appl. Anal. 9 (1979), 121-124. MR 0539537 |
Reference:
|
[8] Górnicki J.: A fixed point theorem for asymptotically regular mappings.to appear. MR 1201441 |
Reference:
|
[9] Krüppel M.: Ein Fixpunktsatz für asymptotisch reguläre Operatoren in gleichmäßig konvexen Banach-Räumen.Wiss. Z. Pädagog. Hochsch. ``Liselotte Herrmann'' Güstrow, Math.-naturwiss. Fak. 25 (1987), 241-246. MR 0971250 |
Reference:
|
[10] Lin P.K.: A uniformly asymptotically regular mapping without fixed points.Canad. Math. Bull. 30 (1987), 481-483. Zbl 0645.47050, MR 0919440 |
Reference:
|
[11] Yu X.T.: On uniformly normal structure.Kexue Tongbao 33 (1988), 700-702. Zbl 0681.46020 |
Reference:
|
[12] Yu X.T.: A geometrically aberrant Banach space with uniformly normal structure.Bull. Austral. Math. Soc. 38 (1988), 99-103. Zbl 0646.46017, MR 0968233 |
. |