Previous |  Up |  Next

Article

Title: Operational quantities derived from the norm and generalized Fredholm theory (English)
Author: Gonzalez, Manuel
Author: Martinon, Antonio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 4
Year: 1991
Pages: 645-657
.
Category: math
.
Summary: We introduce and study some operational quantities associated to a space ideal $\Bbb A$. These quantities are used to define generalized semi-Fredholm operators associated to $\Bbb A$, and the corresponding perturbation classes which extend the strictly singular and strictly cosingular operators, and we study the generalized Fredholm theory obtained in this way. Finally we present some examples and show that the classes of generalized semi-Fredholm operators are non-trivial for several classical space ideals. (English)
Keyword: semi-Fredholm operator
Keyword: strictly singular operator
Keyword: perturbation
MSC: 46B28
MSC: 47A30
MSC: 47A53
MSC: 47B10
idZBL: Zbl 0762.47005
idMR: MR1159811
.
Date available: 2009-01-08T17:47:51Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118444
.
Reference: [1] Alvarez J.A., Alvarez T., Gonzalez M.: The gap between subspaces and perturbation of non semi-Fredholm operators.Bull. Austral. Math. Soc., to appear. Zbl 0785.47009, MR 1165143
Reference: [2] Alvarez T., Gonzalez M.: Some examples of tauberian operators.Proc. Amer. Math. Soc. 111 (1991), 1023-1027. MR 1033955
Reference: [3] Alvarez T., Gonzalez M., Onieva V.M.: Totally incomparable Banach spaces and three-space Banach space ideals.Math. Nachrichten 131 (1987), 83-88. Zbl 0659.46009, MR 0908801
Reference: [4] Alvarez T., Gonzalez M., Onieva V.M.: Characterizing two classes of operator ideals.Contribuciones Matematicas Homenaje Prof. Plans, Univ. Zaragoza (1990), 7-21.
Reference: [5] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian).Spektr. Teor. Oper. 6 (1985), 182-185, Zbl. 634#47010.
Reference: [6] Goldberg S.: Unbounded Linear Operators.McGraw Hill, 1966. Zbl 1152.47001, MR 0200692
Reference: [7] Gonzalez M., Martinon A.: Operational quantities and operator ideals.XIV Jornadas Hispano Lusas de Mat. (Univ. La Laguna, 1989), Univ. La Laguna, 1990, 119-124. MR 1112904
Reference: [8] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators.preprint. MR 1285738
Reference: [9] Gonzalez M., Onieva V.M.: On incomparability of Banach spaces.Math. Z. 192 (1986), 581-585. Zbl 0602.46015, MR 0847007
Reference: [10] Gonzalez M., Onieva V.M.: Characterizations of tauberian operators.Proc. Amer. Math. Soc. 108 (1990), 399-405. Zbl 0704.47016, MR 0994777
Reference: [11] Kadets M.I.: Note on the gap between subspaces.Funct. Anal. Appl. 9 (1975), 156-157. Zbl 0325.46020
Reference: [12] Kalton N.J., Wilansky A.: Tauberian operators in Banach spaces.Proc. Amer. Math. Soc. 57 (1976), 233-240. MR 0473896
Reference: [13] Kato T.: Perturbation theory for linear operators.Springer-Verlag, 1980. Zbl 0836.47009
Reference: [14] Martinon A.: Cantidades operacionales en teoría de Fredholm (Thesis).Univ. La Laguna, 1989. MR 1067932
Reference: [15] Pietsch A.: Operator ideals.North-Holland, 1980. Zbl 1012.47001, MR 0582655
Reference: [16] Rosenthal H.P.: On totally incomparable Banach spaces.J. Funct. Anal. 4 (1969), 167-175. Zbl 0184.15004, MR 0248506
Reference: [17] Schechter M.: Quantities related to strictly singular operators.Indiana Univ. Math. J. 21 (1972), 1061-1071. Zbl 0274.47007, MR 0295103
Reference: [18] Sedaev A.A.: The structure of certain linear operators (in Russian).Mat. Issled. 5 (1970), 166-175, MR 43#2540, Zbl. 247#47005. MR 0276800
Reference: [19] Stephani I.: Operator ideals generalizing the ideal of strictly singular operators.Math. Nachrichten 94 (1980), 29-41. Zbl 0455.47033, MR 0582517
Reference: [20] Weis L.: Über striktly singuläre und striktly cosinguläre Operatoren in Banachräumen (Dissertation).Univ. Bonn, 1974.
Reference: [21] Zemánek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour.Studia Math. 80 (1984), 219-234. MR 0783991
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-4_7.pdf 225.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo