Previous |  Up |  Next

Article

Keywords:
semi-Fredholm operator; strictly singular operator; perturbation
Summary:
We introduce and study some operational quantities associated to a space ideal $\Bbb A$. These quantities are used to define generalized semi-Fredholm operators associated to $\Bbb A$, and the corresponding perturbation classes which extend the strictly singular and strictly cosingular operators, and we study the generalized Fredholm theory obtained in this way. Finally we present some examples and show that the classes of generalized semi-Fredholm operators are non-trivial for several classical space ideals.
References:
[1] Alvarez J.A., Alvarez T., Gonzalez M.: The gap between subspaces and perturbation of non semi-Fredholm operators. Bull. Austral. Math. Soc., to appear. MR 1165143 | Zbl 0785.47009
[2] Alvarez T., Gonzalez M.: Some examples of tauberian operators. Proc. Amer. Math. Soc. 111 (1991), 1023-1027. MR 1033955
[3] Alvarez T., Gonzalez M., Onieva V.M.: Totally incomparable Banach spaces and three-space Banach space ideals. Math. Nachrichten 131 (1987), 83-88. MR 0908801 | Zbl 0659.46009
[4] Alvarez T., Gonzalez M., Onieva V.M.: Characterizing two classes of operator ideals. Contribuciones Matematicas Homenaje Prof. Plans, Univ. Zaragoza (1990), 7-21.
[5] Fajnshtejn A.S.: On measures of noncompactness of linear operators and analogs of the minimal modulus for semi-Fredholm operators (in Russian). Spektr. Teor. Oper. 6 (1985), 182-185, Zbl. 634#47010.
[6] Goldberg S.: Unbounded Linear Operators. McGraw Hill, 1966. MR 0200692 | Zbl 1152.47001
[7] Gonzalez M., Martinon A.: Operational quantities and operator ideals. XIV Jornadas Hispano Lusas de Mat. (Univ. La Laguna, 1989), Univ. La Laguna, 1990, 119-124. MR 1112904
[8] Gonzalez M., Martinon A.: A generalization of semi-Fredholm operators. preprint. MR 1285738
[9] Gonzalez M., Onieva V.M.: On incomparability of Banach spaces. Math. Z. 192 (1986), 581-585. MR 0847007 | Zbl 0602.46015
[10] Gonzalez M., Onieva V.M.: Characterizations of tauberian operators. Proc. Amer. Math. Soc. 108 (1990), 399-405. MR 0994777 | Zbl 0704.47016
[11] Kadets M.I.: Note on the gap between subspaces. Funct. Anal. Appl. 9 (1975), 156-157. Zbl 0325.46020
[12] Kalton N.J., Wilansky A.: Tauberian operators in Banach spaces. Proc. Amer. Math. Soc. 57 (1976), 233-240. MR 0473896
[13] Kato T.: Perturbation theory for linear operators. Springer-Verlag, 1980. Zbl 0836.47009
[14] Martinon A.: Cantidades operacionales en teoría de Fredholm (Thesis). Univ. La Laguna, 1989. MR 1067932
[15] Pietsch A.: Operator ideals. North-Holland, 1980. MR 0582655 | Zbl 1012.47001
[16] Rosenthal H.P.: On totally incomparable Banach spaces. J. Funct. Anal. 4 (1969), 167-175. MR 0248506 | Zbl 0184.15004
[17] Schechter M.: Quantities related to strictly singular operators. Indiana Univ. Math. J. 21 (1972), 1061-1071. MR 0295103 | Zbl 0274.47007
[18] Sedaev A.A.: The structure of certain linear operators (in Russian). Mat. Issled. 5 (1970), 166-175, MR 43#2540, Zbl. 247#47005. MR 0276800
[19] Stephani I.: Operator ideals generalizing the ideal of strictly singular operators. Math. Nachrichten 94 (1980), 29-41. MR 0582517 | Zbl 0455.47033
[20] Weis L.: Über striktly singuläre und striktly cosinguläre Operatoren in Banachräumen (Dissertation). Univ. Bonn, 1974.
[21] Zemánek J.: Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour. Studia Math. 80 (1984), 219-234. MR 0783991
Partner of
EuDML logo