Previous |  Up |  Next

Article

Title: Non-compact perturbations of $m$-accretive operators in general Banach spaces (English)
Author: Cichoń, Mieczysław
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 3
Year: 1992
Pages: 403-409
.
Category: math
.
Summary: In this paper we deal with the Cauchy problem for differential inclusions governed by $m$-accretive operators in general Banach spaces. We are interested in finding the sufficient conditions for the existence of integral solutions of the problem $x'(t)\in -A x(t)+f(t,x(t))$, $x(0)=x_0$, where $A$ is an $m$-accretive operator, and $f$ is a continuous, but non-compact perturbation, satisfying some additional conditions. (English)
Keyword: $m$-accretive operators
Keyword: measures of noncompactness
Keyword: differential inclusions
Keyword: semigroups of contractions
MSC: 34A60
MSC: 34G20
MSC: 47H06
MSC: 47H09
MSC: 47H20
MSC: 47N20
MSC: 58D25
idZBL: Zbl 0770.58003
idMR: MR1209283
.
Date available: 2009-01-08T17:56:50Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118509
.
Reference: [1] Banaś J., Goebel K.: Measures of Noncompactness in Banach Spaces.Lecture Notes in Pure and Applied Math. 60, Marcel Dekker, New York-Basel, 1980. MR 0591679
Reference: [2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces.Noordhoff, Leyden, 1976. Zbl 0328.47035, MR 0390843
Reference: [3] Cellina A., Marchi V.: Non-convex perturbations of maximal monotone differential inclusions.Israel J. Math. 46 (1983), 1-11. Zbl 0542.47036, MR 0727019
Reference: [4] Cichoń M.: Multivalued perturbations of $m$-accretive differential inclusions in non-separable Banach spaces.Commentationes Math. 32, to appear. MR 1384855
Reference: [5] Colombo G., Fonda A., Ornelas A.: Lower semicontinuous perturbations of maximal monotone differential inclusions.Israel J. Math. 61 (1988), 211-218. Zbl 0661.47038, MR 0941237
Reference: [6] Daneš J.: Generalized concentrative mappings and their fixed points.Comment. Math. Univ. Carolinae 11 (1970), 115-136. MR 0263063
Reference: [7] Goncharov V.V., Tolstonogov A.A.: Mutual continuous selections of multifunctions with non-convex values and its applications.Math. Sb. 182 (1991), 946-969. MR 1128253
Reference: [8] Gutman S.: Evolutions governed by $m$-accretive plus compact operators.Nonlinear Anal. Th. Math. Appl. 7 (1983), 707-717. Zbl 0518.34055, MR 0707079
Reference: [9] Gutman S.: Existence theorems for nonlinear evolution equations.ibid. 11 (1987), 1193-1206. Zbl 0642.47055, MR 0913678
Reference: [10] Martin R.H., Jr.: Nonlinear Operators and Differential Equations in Banach Spaces.John Wiley, New York-London-Sydney-Toronto, 1976. Zbl 0333.47023, MR 0492671
Reference: [11] Mitidieri E., Vrabie I.I.: Differential inclusions governed by non convex perturbations of $m$-accretive operators.Differential Integral Equations 2 (1989), 525-531. Zbl 0736.34014, MR 0996758
Reference: [12] Schechter E.: Evolution generated by semilinear dissipative plus compact operators.Trans. Amer. Math. Soc. 275 (1983), 297-308. Zbl 0516.34061, MR 0678351
Reference: [13] Vrabie I.I.: Compactness Methods for Nonlinear Evolutions.Pitman Monographs and Surveys in Pure and Applied Mathematics 32, Longman, Boston-London-Melbourne, 1987. Zbl 0842.47040, MR 0932730
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-3_4.pdf 193.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo