Previous |  Up |  Next

Article

Title: Quadratic functionals with a variable singular end point (English)
Author: Došlá, Zuzana
Author: Zezza, PierLuigi
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 33
Issue: 3
Year: 1992
Pages: 411-425
.
Category: math
.
Summary: In this paper we introduce the definition of coupled point with respect to a (scalar) quadratic functional on a noncompact interval. In terms of coupled points we prove necessary (and sufficient) conditions for the nonnegativity of these functionals. (English)
Keyword: quadratic functional
Keyword: singular quadratic functional
Keyword: Euler-Lagrange equation
Keyword: conjugate point
Keyword: coupled point
Keyword: singularity condition
MSC: 34A10
MSC: 34A12
MSC: 34C10
MSC: 49B10
MSC: 49K05
MSC: 49K15
idZBL: Zbl 0779.49026
idMR: MR1209284
.
Date available: 2009-01-08T17:56:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118510
.
Reference: [1] Morse M., Leighton W.: Singular quadratic functionals.Trans. Amer. Math. Soc. 40 (1936), 252-286. Zbl 0015.02701, MR 1501873
Reference: [2] Leighton W.: Principal quadratic functionals.Trans. Amer. Math. Soc. 67 (1949), 253-274. Zbl 0041.22404, MR 0034535
Reference: [3] Leighton W., Martin A.D.: Quadratic functionals with a singular end point.Trans. Amer. Math. Soc. 78 (1955), 98-128. Zbl 0064.35401, MR 0066570
Reference: [4] Reid W.T.: Sturmian theory for ordinary differential equations.Springer-Verlag 1980. Zbl 0459.34001, MR 0606199
Reference: [5] Zeidan V., Zezza P.: Coupled points in the calculus of variations and applications to periodic problems.Trans. Amer. Math. Soc. 315 (1989), 323-335. Zbl 0677.49020, MR 0961599
Reference: [6] Zeidan V., Zezza P.: Variable end points in the calculus of variations: Coupled points.in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer-Verlag, Heidelberg, 1988. MR 0956284
Reference: [7] Zezza P.: The Jacobi condition for elliptic forms in Hilbert spaces.JOTA 76 (1993). MR 1203907
Reference: [8] Zezza P., Došlá Z.: Coupled points in the calculus of variations and optimal control theory via the quadratic form theory.preprint.
Reference: [9] Coppel W.A.: Disconjugacy.Lecture Notes in Math. 220, Springer-Verlag, Berlin-Heidelberg, 1971. Zbl 0224.34003, MR 0460785
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_33-1992-3_5.pdf 314.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo