Title:
|
On the exterior steady problem for the equations of a viscous isothermal gas (English) |
Author:
|
Padula, Mariarosaria |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
34 |
Issue:
|
2 |
Year:
|
1993 |
Pages:
|
275-293 |
. |
Category:
|
math |
. |
Summary:
|
We prove existence and a representation formula for solutions to the equations describing steady flows of an isothermal, viscous, compressible gas having a positive infimum for the density $\varrho $, moving in an exterior domain, when the speed of the obstacle and the external forces are sufficiently small. (English) |
Keyword:
|
compressible flows |
Keyword:
|
existence of steady solutions |
Keyword:
|
exterior domains |
MSC:
|
35Q35 |
MSC:
|
76N10 |
MSC:
|
76N15 |
idZBL:
|
Zbl 0778.76087 |
idMR:
|
MR1241737 |
. |
Date available:
|
2009-01-08T18:03:23Z |
Last updated:
|
2012-04-30 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/118581 |
. |
Reference:
|
Beirâo da Veiga H.: Boundary value problems for a class of first order partial differential equations in Sobolev spaces and applications to the Euler flow.Rend. Sem. Mat. Univ. Padova 79 247-273. MR 0964034 |
Reference:
|
Finn R.: On the exterior stationary problem for the Navier-Stokes equations and associated perturbation problems.Arch. Ratl. Mech. Anal. 19 363-406. Zbl 0149.44606, MR 0182816 |
Reference:
|
Friedrichs K.O.: Symmetric positive linear differential equations.Comm. Pur. Appl. Math. 11 333-418. Zbl 0083.31802, MR 0100718 |
Reference:
|
Fujita Yashima H.: Sur l'équation de Navier-Stokes compressible stationaire.VII Congresso do Grupo ne Matematicos de Expressâo Latina, Actas vol. II, Coimbra. |
Reference:
|
Galdi G.P.: On the Oseen boundary-value problem in exterior domains.Proc. of ``The Navier-Stokes Equations Theory and Numerical Methods'', J.G. Heywood, K. Masuda, R. Rautmann, V.A. Solonnikov eds., Oberwolfach. Zbl 0783.35047 |
Reference:
|
Galdi G.P.: On the energy equation and on the uniqueness for $D$-solutions to steady Navier-Stokes equations in exterior domains.Mathematical Problems related to the Navier- Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci., 34-78. Zbl 0791.35099, MR 1190729 |
Reference:
|
Galdi G.P.: On the asymptotic structure of $D$-solutions to steady Navier-Stokes equations in exterior domains.Mathematical Problems related to the Navier-Stokes Equation, Galdi G.P. ed., Adv. in Math. for Appl. Sci. Zbl 0794.35111, MR 1190730 |
Reference:
|
Galdi G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations.vol. I Linearized Stationary Problems, Springer Tracts in Natural Philosophy. Zbl 0949.35005, MR 1284205 |
Reference:
|
Matsumura A.: Fundamental solution of the linearized system for the exterior stationary problem of compressible viscous flow.Pattern and Waves, Studies in Math. and its Appl. 18 481-505. Zbl 0637.76064, MR 0882390 |
Reference:
|
Matsumura A., Nishida T.: Exterior stationary problems of motion of compressible viscous and heat-conductive fluids.Proc. EQUADIFF, Dafermos & Ladas & Papanicolau eds., M. Dekker Inc., 473-479. MR 1021749 |
Reference:
|
Novotný A., Padula M. (forthcoming): $L^p$-approach to steady flows of viscous compressible fluids in exterior domains.. |
Reference:
|
Padula M.: Stability properties of heat-conducting compressible regular flows.J. Math. Kyoto Univ. 32 178-222. MR 1173972 |
Reference:
|
Padula M.: A representation formula for steady solutions of a compressible fluid moving at low speed.Transport Theory and Statistical Physics 21 (1992), 593-614. MR 1194463 |
Reference:
|
Padula M., Pileckas C. (forthcoming): Steady flows of a viscous ideal gas in domains with noncompact boundaries: I. Existence and asymptotic behavior in a pipe.. |
Reference:
|
Simader C.G.: The weak Dirichlet and Neumann problem for the laplacian in $L^q$ for bounded and exterior domains.Applications, Nonlinear Analysis, Function Spaces and Applications 4, M. Krbec, A. Kufner, B. Opic, J. Rákosník eds., 180-250. MR 1151436 |
. |