Previous |  Up |  Next

Article

Title: Bernoulli sequences and Borel measurability in $(0,1)$ (English)
Author: Veselý, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 341-346
.
Category: math
.
Summary: The necessary and sufficient condition for a function $f : (0,1) \to [0,1] $ to be Borel measurable (given by Theorem stated below) provides a technique to prove (in Corollary 2) the existence of a Borel measurable map $H : \{ 0,1 \}^\Bbb N \to \{ 0,1 \}^\Bbb N$ such that $\Cal L (H(\text{\bf X}^p)) = \Cal L (\text{\bf X}^{1/2})$ holds for each $p \in (0,1)$, where $\text{\bf X}^p = (X^p_1 , X^p_2 , \ldots )$ denotes Bernoulli sequence of random variables with $P[X^p_i = 1] = p$. (English)
Keyword: Borel measurable function
Keyword: Bernoulli sequence of random variables
Keyword: Strong law of large numbers
MSC: 28A20
MSC: 60A10
idZBL: Zbl 0777.60003
idMR: MR1241742
.
Date available: 2009-01-08T18:03:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118586
.
Reference: [1] Feller W.: An Introduction to Probability Theory and its Applications. Volume II..John Wiley & Sons, Inc. New York, London and Sydney (1966). MR 0210154
Reference: [2] Štěpán J.: Personal communication.(1992).
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_16.pdf 194.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo