Previous |  Up |  Next

Article

Title: On $p$-sequential $p$-compact spaces (English)
Author: Garcia-Ferreira, Salvador
Author: Tamariz-Mascarua, Angel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 347-356
.
Category: math
.
Summary: It is shown that a space $X$ is $L({}^{\mu }p)$-Weakly Fréchet-Urysohn for $p\in \omega ^{\ast }$ iff it is $L({}^{\nu }p)$-Weakly Fréchet-Urysohn for arbitrary $\mu ,\nu <\omega _1$, where ${}^{\mu }p$ is the $\mu $-th left power of $p$ and $L(q)=\{{}^{\mu }q:\mu <\omega _1\}$ for $q\in \omega ^{\ast }$. We also prove that for $p$-compact spaces, $p$-sequentiality and the property of being a $L({}^{\nu }p)$-Weakly Fréchet-Urysohn space with $\nu <\omega _1$, are equivalent; consequently if $X$ is $p$-compact and $\nu <\omega _1$, then $X$ is $p$-sequential iff $X$ is ${}^{\nu }p$-sequential (Boldjiev and Malyhin gave, for each $P$-point $p\in \omega ^{\ast }$, an example of a compact space $X_p$ which is $^2p$-Fréchet-Urysohn and it is not $p$-Fréchet-Urysohn. The question whether such an example exists in ZFC remains unsolved). (English)
Keyword: $p$-compact
Keyword: $p$-sequential
Keyword: $\operatorname{FU}(p)$-space
Keyword: Rudin-Keisler order
Keyword: tensor product of ultrafilters
Keyword: left power of ultrafilters
Keyword: $\operatorname{SMU}(M)$-space
Keyword: $\operatorname{WFU}(M)$-space
MSC: 03E05
MSC: 04A20
MSC: 54A25
MSC: 54D55
idZBL: Zbl 0791.54034
idMR: MR1241743
.
Date available: 2009-01-08T18:03:55Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118587
.
Reference: [Be] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [Bl] Blass A.R.: Kleene degrees of ultrafilters.in: Recursion Theory Weak (OberWolfach, 1984), 29-48, Lecture Notes in Math. 1141, Springer, Berlin-New York, 1985. Zbl 0573.03020, MR 0820773
Reference: [Bo] Booth D.D.: Ultrafilters on a countable set.Ann. Math. Logic 2 (1970), 1-24. Zbl 0231.02067, MR 0277371
Reference: [BM] Boldjiev B., Malyhin V.: The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property.Comment. Math. Univ. Carolinae 31 (1990), 23-25. MR 1056166
Reference: [CN] Comfort W.W., Negrepontis S.: The Theory of Ultrafilters.Grundlehren der Mathematichen Wissenschaften, vol. 211, Springer-Verlag, 1974. Zbl 0298.02004, MR 0396267
Reference: [F] Frolík Z.: Sums of ultrafilters.Bull. Amer. Math. Soc. 73 (1967), 87-91. MR 0203676
Reference: [G-F$_1$] Garcia-Ferreira S.: On ${FU}(p)$-spaces and $p$-sequential spaces.Comment. Math. Univ. Carolinae 32 (1991), 161-171. Zbl 0789.54032, MR 1118299
Reference: [G-F$_2$] Garcia-Ferreira S.: Three orderings on $\beta (ømega)\setminus ømega $.Top. Appl., to appear. Zbl 0791.54032, MR 1227550
Reference: [K] Katětov M.: Products of filters.Comment. Math. Univ. Carolinae 9 (1968), 173-189. MR 0250257
Reference: [Koč] Kočinac L.D.: A generalization of chain net spaces.Publ. Inst. Math. (Beograd) 44 (58) (1988), 109-114. MR 0995414
Reference: [Ko] Kombarov A.P.: On a theorem of A.H. Stone.Soviet Math. Dokl. 27 (1983), 544-547. Zbl 0531.54007
Reference: [M] Malyhin V.I.: On countable space having no bicompactification of countable tightness.Soviet Math. Dokl. 13 (1972), 1407-1411. MR 0320981
Reference: [V] Vopěnka P.: The construction of models of set-theory by the method of ultraproducts.Z. Math. Logik Grundlagen Math. 8 (1962), 293-306. MR 0146085
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_17.pdf 235.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo