Previous |  Up |  Next

Article

Title: The notion of closedness in topological categories (English)
Author: Baran, Mehmet
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 383-395
.
Category: math
.
Summary: In [1], various generalizations of the separation properties, the notion of closed and strongly closed points and subobjects of an object in an arbitrary topological category are given. In this paper, the relationship between various generalized separation properties as well as relationship between our separation properties and the known ones ([4], [5], [7], [9], [10], [14], [16]) are determined. Furthermore, the relationships between the notion of closedness and strongly closedness are investigated in an arbitrary topological category and a characterization of each of these notions is given for some known topological categories. (English)
Keyword: topological category
Keyword: separation properties
Keyword: (strongly) closed objects
MSC: 18B99
MSC: 18D15
MSC: 54A05
MSC: 54A20
MSC: 54B30
MSC: 54D10
idZBL: Zbl 0780.18003
idMR: MR1241748
Note: XXX špatné pořadí stránek ()
.
Date available: 2009-01-08T18:04:23Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118592
.
Reference: [1] Baran M.: Separation properties.Indian J. Pure Appl. Math. 23 (1992), 13-21. Zbl 0876.54009, MR 1166899
Reference: [2] Baran M.: Stacks and filters.Turkish J. of Math.-Doğa 16 (1992), 94-107. Zbl 0841.54004, MR 1180841
Reference: [3] Baran M., Mielke M.V.: Generalized Separation Properties in Topological Categories.in preparation.
Reference: [4] Brümmer G.C.L.: A Categorical Study of Initiality in Uniform Topology.Thesis, University of Cape Town, 1971.
Reference: [5] Harvey J.M.: $T_0$-separation in topological categories.Quastiones Math. 2 (1977), 177-190. Zbl 0384.18002, MR 0486050
Reference: [6] Herrlich H.: Topological functors.Gen. Top. Appl. 4 (1974), 125-142. Zbl 0288.54003, MR 0343226
Reference: [7] Hoffmann R.-E.: $(E,M)$-Universally Topological Functors.Habilitationsschrift, Universität Düsseldorf, 1974.
Reference: [8] Hosseini N.: The Geometric Realization Functors and Preservation of Finite Limits.Dissertation, University of Miami, 1986.
Reference: [9] Hušek M., Pumplün D.: Disconnectedness.Quaestiones Math. 13 (1990), 449-459. MR 1084754
Reference: [10] Marny Th.: Rechts-Bikategoriestrukturen in topologischen Kategorien.Dissertation, Freie Universität Berlin, 1973.
Reference: [11] Mielke M.V.: Convenient categories for internal singular algebraic topology.Illinois Journal of Math., vol. 27, no. 3, 1983. Zbl 0496.55006, MR 0698313
Reference: [12] Mielke M.V.: Geometric topological completions with universal final lifts.Top. and Appl. 9 (1985), 277-293. Zbl 0581.18004, MR 0794490
Reference: [13] Munkres J.R.: Topology: A First Course.Prentice Hall Inc., New Jersey, 1975. Zbl 0306.54001, MR 0464128
Reference: [14] Nel L.D.: Initially structured categories and cartesian closedness.Can. Journal of Math. XXVII (1975), 1361-1377. Zbl 0294.18002, MR 0393183
Reference: [15] Schwarz F.: Connections Between Convergence and Nearness.Lecture Notes in Math. 719, Springer-Verlag, 1978, pp. 345-354. Zbl 0409.54002, MR 0544658
Reference: [16] Weck-Schwarz S.: $T_0$-objects and separated objects in topological categories.Quastiones Math. 14 (1991), 315-325. MR 1123910
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_22.pdf 244.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo