Previous |  Up |  Next

Article

Title: Partitions of $k$-branching trees and the reaping number of Boolean algebras (English)
Author: Laflamme, Claude
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 2
Year: 1993
Pages: 397-399
.
Category: math
.
Summary: The reaping number $\frak r_{m,n}({\Bbb B})$ of a Boolean algebra ${\Bbb B}$ is defined as the minimum size of a subset ${\Cal A} \subseteq {\Bbb B}\setminus \{{\bold O}\}$ such that for each $m$-partition $\Cal P$ of unity, some member of $\Cal A$ meets less than $n$ elements of $\Cal P$. We show that for each ${\Bbb B}$, $\frak r_{m,n}(\Bbb B) = \frak r_{\lceil \frac{m}{n-1} \rceil,2}(\Bbb B)$ as conjectured by Dow, Steprāns and Watson. The proof relies on a partition theorem for finite trees; namely that every $k$-branching tree whose maximal nodes are coloured with $\ell$ colours contains an $m$-branching subtree using at most $n$ colours if and only if $\lceil \frac{\ell}{n} \rceil < \lceil \frac{k}{m-1} \rceil$. (English)
Keyword: Boolean algebra
Keyword: reaping number
Keyword: partition
MSC: 05C05
MSC: 05C15
MSC: 05C90
MSC: 06E05
MSC: 06E10
idZBL: Zbl 0783.06009
idMR: MR1241749
.
Date available: 2009-01-08T18:04:28Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118593
.
Reference: [1] Balcar B., Simon P.: On minimal $\pi$-character of points in extremally disconnected spaces.Topology Appl. 41 (1991), 133-145. MR 1129703
Reference: [2] Balcar B., Simon P.: Reaping number and $\pi$-character of Boolean algebras.preprint, 1991. Zbl 0766.06012, MR 1189823
Reference: [3] Beslagić A., van Douwen E.K.: Spaces of nonuniform ultrafilters in spaces of uniform ultrafilters.Topology Appl. 35 (1990), 253-260. MR 1058805
Reference: [4] Dow A., Steprāns, Watson S.: Reaping numbers of Boolean algebras.preprint, 1992.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-2_23.pdf 174.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo