Previous |  Up |  Next

Article

Title: A note on the existence of solution for semilinear heat equations with polynomial growth nonlinearity (English)
Author: Kim, Wan Se
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 425-431
.
Category: math
.
Summary: The existence of weak solution for periodic-Dirichlet problem to semilinear heat equations with superlinear growth non-linear term is treated. (English)
Keyword: periodic-Dirichlet problem
Keyword: semilinear heat equation
Keyword: superlinear growth
MSC: 35B10
MSC: 35K05
MSC: 35K20
MSC: 35K55
MSC: 35K60
MSC: 47F05
idZBL: Zbl 0781.35033
idMR: MR1243074
.
Date available: 2009-01-08T18:04:59Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118599
.
Reference: [1] Brezis H., Nirenberg L.: Characterization of the range of some nonlinear operators and application to boundary value problem.Ann. Scuola Norm Pisa (4) 5 (1978), 225-326. MR 0513090
Reference: [2] Fučík S.: Solvability of Nonlinear Equations and Boundary Value Problems.Pediel, Dordrecht, 1980. MR 0620638
Reference: [3] Nkashama M.N., Willem M.: Periodic solutions of the boundary value problem for the nonlinear heat equation.Bull. Austral. Math. Soc. 29 (1984), 99-110. Zbl 0555.35062, MR 0753565
Reference: [4] Sanchez L.: A note on periodic solutions of heat equation with a superlinear term.Nonlinear Functional Anal. and its Appl., S.P. Singh (ed.), D. Reidel Publ. Co., 1986. Zbl 0611.35046, MR 0852596
Reference: [5] Šťastnová, Fučík S.: Note to periodic solvability of the boundary value problem for nonlinear heat equation.Comment. Math. Univ. Carolinae 18 (1977), 735-740. MR 0499739
Reference: [6] Vejvoda O. and al.: Partial Differential Equations, Time Periodic Solutions.Sijthoff Noordhoff, 1981.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_5.pdf 184.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo