Previous |  Up |  Next

Article

Title: On total curvature of immersions and minimal submanifolds of spheres (English)
Author: Rotondaro, Giovanni
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 459-463
.
Category: math
.
Summary: For closed immersed submanifolds of Euclidean spaces, we prove that $\int |\mu |^2\, dV\geq V/R^2$, where $\mu $ is the mean curvature field, $V$ the volume of the given submanifold and $R$ is the radius of the smallest sphere enclosing the submanifold. Moreover, we prove that the equality holds only for minimal submanifolds of this sphere. (English)
Keyword: closed submanifold
Keyword: total mean curvature
Keyword: minimal submanifold
MSC: 53A05
MSC: 53C40
MSC: 53C42
MSC: 53C45
MSC: 58E12
idZBL: Zbl 0787.53049
idMR: MR1243078
.
Date available: 2009-01-08T18:05:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118603
.
Reference: [1] Benson R.: Euclidean Geometry and Convexity.Mc Graw-Hill, New York, 1966. Zbl 0187.44103, MR 0209949
Reference: [2] Chen B.-Y.: Total Mean Curvature and Submanifolds of Finite Type.World Scientific, Singapore, 1984. Zbl 0537.53049, MR 0749575
Reference: [3] Chern S.S., Hsiung C.C.: On the isometry of compact submanifolds in Euclidean space.Math. Ann. 149 (1962/63), 278-285. MR 0148011
Reference: [4] Kühnel W.: A lower bound for the $i$-th total absolute curvature of an immersion.Colloq. Math. 41 (1969), 253-255. MR 0591931
Reference: [5] Reilly R.: On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space.Comm. Math. Helv. 52 (1977), 525-533. Zbl 0382.53038, MR 0482597
Reference: [6] Spivak M.: A Comprehensive Introduction to Differential Geometry.Vol. I-V, Publish or Perish, Berkeley, 1970-1979. Zbl 0439.53005, MR 0532830
Reference: [7] Weiner J.L.: An inequality involving the length, curvature and torsions of a curve in Euclidean $n$-space.Pacific J. Math. 74 (1978), 531-534. Zbl 0377.53001, MR 0478025
Reference: [8] Willmore T.J.: Note on embedded surfaces.An. St. Univ. Iasi, s.I.a. Mat. 12B (1965), 493-496. Zbl 0171.20001, MR 0202066
Reference: [9] Willmore T.J.: Tight immersions and total absolute curvature.Bull London Math. Soc. 3 (1971), 129-151. Zbl 0217.19001, MR 0292003
Reference: [10] Willmore T.J.: Total Curvature in Riemannian Geometry.Ellis Horwood Limited, Chichester, 1982. Zbl 0501.53038, MR 0686105
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_9.pdf 174.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo