Previous |  Up |  Next

Article

Title: Necessary and sufficient conditions for weak convergence of random sums of independent random variables (English)
Author: Krajka, A.
Author: Rychlik, Z.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 465-482
.
Category: math
.
Summary: Let $\{X_n,\, n\geq 1\}$ be a sequence of independent random variables such that $EX_n=a_n$, $E(X_n-a_n)^2=\sigma _n^2$, $n\geq 1$. Let $\{N_n,\, n\geq 1\}$ be a sequence od positive integer-valued random variables. Let us put $S_{N_n}=\sum_{k=1}^{N_n} X_k$, $L_n=\sum_{k=1}^{n} a_k$, $s_n^2=\sum_{k=1}^{n} \sigma _k^2$, $n\geq 1$. In this paper we present necessary and sufficient conditions for weak convergence of the sequence $\{(S_{N_n}-L_n)/s_n,\, n\geq 1\}$, as $n\rightarrow \infty $. The obtained theorems extend the main result of M. Finkelstein and H.G. Tucker (1989). (English)
Keyword: random sums
Keyword: weak convergence
Keyword: stable law
Keyword: nonrandom centering
Keyword: measure of dependence between $\sigma $-fields
MSC: 60F05
MSC: 60G50
idZBL: Zbl 0785.60016
idMR: MR1243079
.
Date available: 2009-01-08T18:05:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118604
.
Reference: [1] Bhattacharya R.N., Ranga Rao R.: Normal approximation and Asymptotic Expansions.John Wiley & Sons, New York-London-Sydney-Toronto, 1976. Zbl 0657.41001, MR 0436272
Reference: [2] Bradley C.R., Bryc W., Janson S.: Remarks on the foundations of measures of dependence.New Perspectives in Theoretical and Applied Statistics, ed. by Dr. Madan L. Puri, Dr. Jose Perez Vilaplana and Dr. Wolfgang Wertz, John Wiley & Sons Inc., 1987, pp. 421-437. Zbl 0619.60011, MR 0900202
Reference: [3] Finkelstein M., Tucker H.G.: A necessary and sufficient condition for convergence in law of random sums of random variables under nonrandom centering.Proc. Amer. Math. Soc. 107 (1989), 1061-1070. Zbl 0682.60017, MR 0993749
Reference: [4] Krajka A., Rychlik Z.: On the limit behaviour of randomly indexed sums of independent random variables.Liet. Matem. Rink. 28 (1988), 484-494. Zbl 0659.60040, MR 0969463
Reference: [5] Krajka A., Rychlik Z.: On the rate of convergence in the random central limit theorem in Hilbert space.Probab. and Math. Stat. 11 (1990), 97-108. Zbl 0741.60006, MR 1096941
Reference: [6] Kruglov V.M.: O skhodimosti raspredelenii summ sluchainogo chisla nezavisimykch sluchainykh velichin k normal'nomu raspredeleniyu.Vestnik Mosk. Univ. 5 (1976), 5-12. MR 0426104
Reference: [7] Petrov V.V.: Predel'nye teoremy dlja summ nezavisimykh sluchainykh velichin.Moskva, Nauka, 1987. MR 0896036
Reference: [8] Rychlik Z.: A remainder term estimate in a random-sum central limit theorem.Bull. of the Pol. Acad. of Sci., Math. XXV (1985), 57-63. Zbl 0564.60024, MR 0798728
Reference: [9] Szasz D., Freyer B.: On the sums of a random number of random variables.Liet. Matem. Rink. 11 (1971), 181-187. Zbl 0229.60035, MR 0303582
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_10.pdf 258.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo