Previous |  Up |  Next

Article

Title: Some adaptive estimators for slope parameter (English)
Author: Viet, Tran Quoc
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 483-500
.
Category: math
.
Summary: An adaptive estimator (of a slope parameter) based on rank statistics is constructed and its asymptotic optimality is studied. A complete orthonormal system is incorporated in the adaptive determination of the score generating function. The proposed sequential procedure is based on a suitable stopping rule. Various properties of the sequential adaptive procedure and the stopping rule are studied. Asymptotic linearity results of linear rank statistics are also studied and some rates of the convergence are established. (English)
Keyword: asymptotically optimal score generating function
Keyword: Fisher information
Keyword: orthonormal system
Keyword: rank $(R-)$-estimator
Keyword: stopping rule
Keyword: asymptotically optimal estimators
MSC: 62G05
MSC: 62G20
MSC: 62L12
idZBL: Zbl 0796.62036
idMR: MR1243080
.
Date available: 2009-01-08T18:05:30Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118605
.
Reference: [1] Beran R.: Asymptotically efficient adaptive rank estimates in location models.Ann. Statist. 2 (1974), 63-74. Zbl 0284.62016, MR 0345295
Reference: [2] Billingsley P.: Convergence of Probability Measures.John Wiley, New York, 1968. Zbl 0944.60003, MR 0233396
Reference: [3] Hájek J., Šidák Z.: Theory of Rank tests.Academic Press, Academia, Praha, 1967. MR 0229351
Reference: [4] Hušková M.: Adaptive procedures for the two-sample location model.Commun. Statist. Sequential Analysis 2 (1983-1984), 387-401. MR 0752416
Reference: [5] Hušková M.: Sequentially adaptive nonparametric procedures.Handbook of Sequential Analysis, Ghosh B.K. and Sen P.K. (eds.), Reidel, 1991, pp. 459-474. MR 1174316
Reference: [6] Hušková M., Sen P.K.: On sequentially adaptive asymptotically efficient rank statistics.Sequential Analysis 4 (1985), 125-151. MR 0805946
Reference: [7] Rödel E.: Linear rank statistics with estimated scores for testing independence.Statistics, Karl-Weierstraß-Institute of Mathematics, Berlin, 20, pp. 423-438. MR 1012313
Reference: [8] Viet T.Q.: Some adaptive estimators in regression models.Ph.D. Thesis, Charles University, Prague, Czech Republic.
Reference: [9] Víšek J.A.: Adaptive estimation in linear regression model.submitted.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_11.pdf 253.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo