Previous |  Up |  Next

Article

Title: Topos based homology theory (English)
Author: Mielke, M. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 549-565
.
Category: math
.
Summary: In this paper we extend the Eilenberg-Steenrod axiomatic description of a homology theory from the category of topological spaces to an arbitrary category and, in particular, to a topos. Implicit in this extension is an extension of the notions of homotopy and excision. A general discussion of such homotopy and excision structures on a category is given along with several examples including the interval based homotopies and, for toposes, the excisions represented by ``cutting out'' subobjects. The existence of homology theories on toposes depends upon their internal logic. It is shown, for example, that all ``reasonable'' homology theories on a topos in which De Morgan's law holds are trivial. To obtain examples on non-trivial homology theories we consider singular homology based on a cosimplicial object. For toposes singular homology satisfies all the axioms except, possibly, excision. We introduce a notion of ``tightness'' and show that singular homology based on a sufficiently tight cosimplicial object satisfies the excision axiom. Cha\-rac\-terizations of various types of tight cosimplicial objects in the functor topos $\text{\rm Sets}^C$ are given and, as a result, a general method for constructing non-trivial homology theories is obtained. We conclude with several explicit examples. (English)
Keyword: singular homology
Keyword: homotopy
Keyword: excision
Keyword: topos
Keyword: interval
MSC: 18G99
MSC: 55N10
MSC: 55N35
MSC: 55N40
MSC: 55U40
idZBL: Zbl 0785.55003
idMR: MR1243087
.
Date available: 2009-01-08T18:06:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118612
.
Reference: [1] Artin E., Braun H.: Introduction to algebraic topology.Merrill Publ., Columbus, Ohio, 1969. Zbl 0181.51201, MR 0247624
Reference: [2] Bing R.H.: A connected, countable, Hausdorff space.Proceedings of A.M.S., Vol. 4, No. 3, 1953, p. 474. Zbl 0051.13902, MR 0060806
Reference: [3] Dold A.: Lectures on algebraic topology.Band 200, Springer Verlag, 1980. Zbl 0872.55001, MR 0606196
Reference: [4] Dugundji J.: Topology.Allyn and Bacon, Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [5] Duskin J.: Simplicial methods and the interpretation of ``triple'' cohomology.Memoirs of the A.M.S., Vol. 3, Issue 2, No. 163, 1975. Zbl 0376.18011, MR 0393196
Reference: [6] Eilenberg S., Steenrod N.: Foundations of algebraic topology.Princeton University Press, Princeton, N.J., 1952. Zbl 0047.41402, MR 0050886
Reference: [7] Gabriel P., Zisman M.: Calculus of fractions and homotopy theory.Springer-Verlag, New York, 1967. Zbl 0231.55001, MR 0210125
Reference: [8] Greenberg M.J., Harper J.R.: Algebraic topology.Benjamin/Cummings Publ. Co., Reading, Mass., 1981. Zbl 0498.55001, MR 0643101
Reference: [9] Grothendieck A.: Eléments de géométrie algébrique.I.H.E.S. Publications mathématiques, No. 4, 1960. Zbl 0203.23301
Reference: [10] Herrlich H.: Topological functors.General Topology and Appl. 4 (1974), 125-142. Zbl 0288.54003, MR 0343226
Reference: [11] Hu S.T.: Homology theory.Holden-Day, Inc., San Francisco, 1966. MR 0217786
Reference: [12] Johnstone P.T.: Topos theory.L.M.S. Math Monograph, No. 10, Academic Press, 1977. Zbl 1071.18002, MR 0470019
Reference: [13] Johnstone P.T.: Conditions related to De Morgan's law.in: Applications of Sheaves, Springer Lecture Notes, No. 753, 1979, pp. 47l9-491. Zbl 0445.03041, MR 0555556
Reference: [14] Johnstone P.T.: Another condition equivalent to De Morgan's law.Communications in Algebra 7 (1979), 1309-1312. Zbl 0417.18002, MR 0538331
Reference: [15] Johnstone P.T.: On a topological topos.Proc. London Math. Soc. 38 (1979), 237-271. Zbl 0402.18006, MR 0531162
Reference: [16] Lamotke K.: Semisimpliziale algebraische Topologie.(Die Grundlehren der mathematischen Wissenschaften) Vol. 147, Springer-Verlag, Berlin and New York, 1968. Zbl 0188.28301, MR 0245005
Reference: [17] MacLane S.: Homology.Academic Press, New York, and Springer-Verlag, Berlin and New York, 1963. Zbl 0149.26203, MR 0156879
Reference: [18] MacLane S.: Categories for working mathematician.Springer-Verlag, New York, Heidelberg, Berlin, 1971. MR 0354798
Reference: [19] May J.P.: Simplicial objects in algebraic topology.Van Nostrand Math. Studies, No. 11, Van Nostrand, New York, 1967. Zbl 0769.55001, MR 0222892
Reference: [20] Mielke M.V.: The interval in algebraic topology.Ill. J. Math. 25 (1981), 1-62. Zbl 0425.55010, MR 0602895
Reference: [21] Mielke M.V.: Exact intervals.Ill. J. Math. 25 (1981), 593-597. Zbl 0444.55017, MR 0630836
Reference: [22] Mielke M.V.: Convenient categories for internal singular algebraic topology.Ill. J. Math. 27 (1983), 519-534. Zbl 0496.55006, MR 0698313
Reference: [23] Mielke M.V.: Homotopically trivial toposes.Pacific J. of Math. 110 (1984), 171-182. Zbl 0488.55015, MR 0722748
Reference: [24] Pare R., Schumacher D.: Abstract families and the adjoint functor theorems.Springer Lecture Notes in Math. 661, 1978. Zbl 0389.18002, MR 0514193
Reference: [25] Spanier E.H.: Algebraic topology.McGraw-Hill, New York, 1966. Zbl 0810.55001, MR 0210112
Reference: [26] Switzer R.M.: Algebraic topology - homotopy and homology.Band 212, Springer-Verlag, Berlin and New York, 1975. Zbl 0629.55001, MR 0385836
Reference: [27] Vick J.W.: Homology theory.Academic Press, New York, 1973. Zbl 0789.55004, MR 0375279
Reference: [28] Wallace A.H.: Algebraic topology.Pergamon Press, Oxford, 1961. Zbl 1121.55002
Reference: [29] Wyler O.: Are there topoi in topology.Springer Lecture Notes in Math. 540 (1975), 700-719. Zbl 0354.54001, MR 0458346
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_18.pdf 294.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo