Previous |  Up |  Next

Article

Title: Some conditions under which a uniform space is fine (English)
Author: Marconi, Umberto
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 34
Issue: 3
Year: 1993
Pages: 543-547
.
Category: math
.
Summary: Let $X$ be a uniform space of uniform weight $\mu$. It is shown that if every open covering, of power at most $\mu$, is uniform, then $X$ is fine. Furthermore, an $\omega _\mu $-metric space is fine, provided that every finite open covering is uniform. (English)
Keyword: uniform space
Keyword: uniform weight
Keyword: fine uniformity
Keyword: uniformly locally finite
Keyword: $\omega _\mu $-additive space
Keyword: $\omega _\mu $-metric space
MSC: 54A25
MSC: 54A35
MSC: 54E15
idZBL: Zbl 0845.54017
idMR: MR1243086
.
Date available: 2009-01-08T18:06:04Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118611
.
Reference: [1] Artico G. and Moresco R.: $\;ømega_\mu$-additive topological spaces.Rend. Sem. Mat. Univ. Padova 67 (1982), 131-141. MR 0682706
Reference: [2] Atsuji M.: Uniform continuity of continuous functions of metric spaces.Pacific J. Math. 8 (1958), 11-16. Zbl 0082.16207, MR 0099023
Reference: [3] Di Concilio A., Naimpally S.A.: Uniform continuity in sequentially uniform spaces.Acta Mathematica Hungarica 61 3-4 (1993 \toappear). Zbl 0819.54014, MR 1200953
Reference: [4] Engelking R.: General Topology.Polish Scientific Publishers Warsaw (1977). Zbl 0373.54002, MR 0500780
Reference: [5] Isbell J.R.: Uniform Spaces.Mathematical Surveys nr 12 AMS Providence, Rhode Island (1964). Zbl 0124.15601, MR 0170323
Reference: [6] Isiwata T.: On uniform continuity of $C(X)$ (Japanese).Sugaku Kenkiu Roku of Tokyo Kyoiku Daigaku 2 (1955), 36-45.
Reference: [7] Marconi U.: On the uniform paracompactness.Rend. Sem. Mat. Univ. Padova 72 (1984), 101-105. Zbl 0566.54013, MR 0778348
Reference: [8] Marconi U.: On uniform paracompactness of the $\;ømega_\mu$-metric spaces.Rend. Accad. Naz. Lincei 75 (1983), 102-105. MR 0780810
Reference: [9] Morita K.: Paracompactness and product spaces.Fund. Math. 50 (1962), 223-236. Zbl 0099.17401, MR 0132525
Reference: [10] Rainwater J.: Spaces whose finest uniformity is metric.Pacific J. Math. 9 (1959), 567-570. Zbl 0088.38301, MR 0106448
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_34-1993-3_17.pdf 170.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo