Previous |  Up |  Next

Article

Title: On the $\Cal L$-characteristic of fractional powers of linear operators (English)
Author: Appell, Jürgen
Author: Simões, Marilda A.
Author: Zabrejko, Petr P.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 1
Year: 1994
Pages: 21-34
.
Category: math
.
Summary: We describe the geometric structure of the ${\Cal L}$-characteristic of fractional powers of bounded or compact linear operators over domains with arbitrary measure. The description builds essentially on the Riesz-Thorin and Marcinkiewicz-Stein-Weiss-\linebreak Ovchinnikov interpolation theorems, as well as on the Krasnosel'skij-Krejn factorization theorem. (English)
Keyword: fractional powers of operators
Keyword: $L$-characteristic
Keyword: Lebesgue spaces
Keyword: interpolation theorems
MSC: 46E30
MSC: 46M35
MSC: 47A57
MSC: 47A60
MSC: 47A99
MSC: 47B37
MSC: 47B38
idZBL: Zbl 0806.47014
idMR: MR1292579
.
Date available: 2009-01-08T18:08:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118637
.
Reference: [1] Bergh J., Löfström J.: Interpolation spaces - an introduction.Springer, Berlin, 1976. MR 0482275
Reference: [2] Brudnyj Ju.A., Krejn S.G., Semenov E. M.: Interpolation of linear operators (in Russian).Itogi Nauki Tekhniki 24 (1986), 3-163 [Engl. transl.: J. Soviet Math. 42 (1988), 2009-2113]. MR 0887950
Reference: [3] Butzer P.L., Berens H.: Semigroups of operators and approximation.Springer, Berlin, 1967.
Reference: [4] Calderón A.P.: Intermediate spaces and interpolation: the complex method.Studia Math. 24 (1964), 113-190. MR 0167830
Reference: [5] Calderón A.P., Zygmund A.: A note on the interpolation of linear operators.Studia Math. 12 (1951), 194-204. MR 0046567
Reference: [6] Hunt R.A.: On $L(p,q)$ spaces.Enseignement Math. 12 (1966), 249-276. Zbl 0181.40301, MR 0223874
Reference: [7] Krasnosel'skij M.A.: Decomposition of operators from $L_q$ into $L_p$ (in Russian).Dokl. Akad. Nauk SSSR 82,3 (1952), 333-336.
Reference: [8] Krasnosel'skij M.A.: Properties of the root of a linear integral operator (in Russian).Dokl. Akad. Nauk SSSR 88,5 (1953), 749-751. MR 0055561
Reference: [9] Krasnosel'skij M.A.: On a theorem of M. Riesz (in Russian).Dokl. Akad. Nauk SSSR 131,2 (1960), 246-248.
Reference: [10] Krasnosel'skij M.A., Krejn S.G.: Criteria for the continuity and complete continuity of a linear operator in terms of properties of its square (in Russian).Trudy Sem. Funk. Anal. Voronezh. 5 (1957), 98-101.
Reference: [11] Krasnosel'skij M.A., Pustyl'nik E.I.: Using fractional powers of operators in the investigation of Fourier series expansion with respect to eigenfunctions of differential operators (in Russian).Dokl. Akad. Nauk SSSR 122,6 (1958), 978-981. MR 0100145
Reference: [12] Krasnosel'skij M.A., Zabrejko P.P.: On the $L$-characteristic of operators (in Russian).Uspekhi Mat. Nauk 19 (1964), 187-189.
Reference: [13] Krasnosel'skij M.A., Zabrejko P.P., Pustyl'nik E.I., Sobolevskij P.E.: Integral operators in spaces of summable functions (in Russian).Nauka, Moscow 1966 [Engl. transl.: Noordhoff, Leyden, 1976].
Reference: [14] Krejn S.G., Petunin Ju.I., Semenov E.M.: Interpolation of linear operators (in Russian).Nauka, Moscow 1978 [Engl. transl.: Math. Monogr. Amer. Math. Soc., Providence, 1982]. MR 0506343
Reference: [15] Marcinkiewicz J.: Sur l'interpolation d'opérateurs.C.R. Acad. Sci. Paris 208 (1939), 1272-1273.
Reference: [16] O'Neil R.: Convolution operators and L(p,q) spaces.Duke Math. J. 30,1 (1963), 129-142. Zbl 0178.47701
Reference: [17] Ovchinnikov V.I.: An exact interpolation theorem in $L_p$ spaces (in Russian).Dokl. Akad. Nauk SSSR 272,2 (1983), 300-303. MR 0724507
Reference: [18] Pustyl'nik E.I.: On fractional powers of unbounded positive operators (in Ukrainian).Dokl. Akad. Nauk UkrSSR 10 (1961), 1266-1270.
Reference: [19] Rao M.M., Ren Z.D.: Theory of Orlicz spaces.Dekker Inc., New York, 1991. Zbl 0724.46032, MR 1113700
Reference: [20] Riemenschneider S.D.: The L-characteristics of linear operators on $L^{1/\alpha}([0,1])$.J. Funct. Anal. 8 (1971), 405-421. MR 0290144
Reference: [21] Riemenschneider S.D.: Linear operators on $L^{1/\alpha}(0,\infty)$ and Lorentz spaces: the Krasnosel'skii-Zabreiko characteristic sets.Studia Math. 49 (1974), 225-233. MR 0333703
Reference: [22] Riesz M.: Sur les maxima des formes bilinéaires et sur les fonctionnelles linéaires.Acta Math. 49 (1926), 465-497. MR 1555250
Reference: [23] Rutitskij Ja.B.: Scales of Orlicz spaces and interpolation theorems (in Russian).Dokl. Akad. Nauk SSSR 149,1 (1963), 32-35. MR 0160101
Reference: [24] Stein E.M., Weiss G.: An extension of a theorem of Marcinkiewicz and some of its applications.J. Math. Mech. 8,2 (1959), 263-284. Zbl 0084.10801, MR 0107163
Reference: [25] Thorin G.O.: An extension of a convexity theorem due to M. Riesz.Comm. Sem. Math. Lund 4 (1939), 1-5. Zbl 0021.14404
Reference: [26] Zabrejko P.P., Krasnosel'skij M.A., Pustyl'nik E.I.: A problem for fractional powers of operators (in Russian).Uspekhi Mat. Nauk 20,6 (1965), 87-89. MR 0199724
Reference: [27] Zygmund A.: On a theorem of Marcinkiewicz concerning interpolation.J. Pure Appl. Math. 9 (1956), 223-248. Zbl 0070.33701, MR 0080887
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-1_3.pdf 314.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo