Previous |  Up |  Next

Article

Title: Remarks on special ideals in lattices (English)
Author: Beran, Ladislav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 607-615
.
Category: math
.
Summary: The author studies some characteristic properties of semiprime ideals. The semiprimeness is also used to characterize distributive and modular lattices. Prime ideals are described as the meet-irreducible semiprime ideals. In relatively complemented lattices they are characterized as the maximal semiprime ideals. $D$-radicals of ideals are introduced and investigated. In particular, the prime radicals are determined by means of $\hat C$-radicals. In addition, a necessary and sufficient condition for the equality of prime radicals is obtained. (English)
Keyword: semiprime ideal
Keyword: prime ideal
Keyword: congruence of a lattice
Keyword: allele
Keyword: lattice polynomial
Keyword: meet-irreducible element
Keyword: kernel
Keyword: forbidden exterior quotients
Keyword: $D$-radical
Keyword: prime radical
MSC: 06B10
idZBL: Zbl 0812.06002
idMR: MR1321231
.
Date available: 2009-01-08T18:13:45Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118702
.
Reference: [1] Beran L.: Orthomodular Lattices (Algebraic Approach).Reidel Dordrecht (1985). Zbl 0558.06008, MR 0784029
Reference: [2] Beran L.: Distributivity in finitely generated orthomodular lattices.Comment. Math. Univ. Carolinae 28 (1987), 433-435. Zbl 0624.06008, MR 0912572
Reference: [3] Beran L.: On semiprime ideals in lattices.J. Pure Appl. Algebra 64 (1990), 223-227. Zbl 0703.06003, MR 1061299
Reference: [4] Beran L.: On the rhomboidal heredity in ideal lattices.Comment. Math. Univ. Carolinae 33 (1992), 723-726. Zbl 0782.06007, MR 1240194
Reference: [5] Birkhoff G.: Lattice Theory.3rd ed., American Math. Soc. Colloq. Publ., vol. XXV, Providence, 1967. Zbl 0537.06001, MR 0227053
Reference: [6] Chevalier G.: Semiprime ideals in orthomodular lattices.Comment. Math. Univ. Carolinae 29 (1988), 379-386. Zbl 0655.06008, MR 0957406
Reference: [7] Dubreil-Jacotin M.L., Lesieur L., Croisot R.: Leçons sur la théorie des treillis, des structures algébriques ordonnées et des treillis géometriques.Gauthier-Villars Paris (1953). Zbl 0051.26005, MR 0057838
Reference: [8] Rav Y.: Semiprime ideals in general lattices.J. Pure Appl. Algebra 56 (1989), 105-118. Zbl 0665.06006, MR 0979666
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_2.pdf 190.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo