Previous |  Up |  Next

Article

Title: Free $\ell $-groups and free products of $\ell $-groups (English)
Author: Ton, Dao-Rong
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 35
Issue: 4
Year: 1994
Pages: 617-625
.
Category: math
.
Summary: In this paper we have given the construction of free $\ell $-groups generated by a po-group and the construction of free products in any sub-product class $\Cal U$ of $i\ell$-groups. We have proved that the $\Cal U$-free products satisfy the weak subalgebra property. (English)
Keyword: lattice-ordered group ($\ell $-group)
Keyword: free $\ell $-group
Keyword: free product of $\ell $-groups
Keyword: sub-product class of $\ell $-groups
MSC: 06F15
MSC: 20F60
idZBL: Zbl 0820.06010
idMR: MR1321232
.
Date available: 2009-01-08T18:13:49Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118703
.
Reference: [1] Anderson M., Feil T.: Lattice-Ordered Groups (An Introduction).D. Reidel Publishing Company, 1988. Zbl 0636.06008, MR 0937703
Reference: [2] Conrad P.: Lattice-Ordered Groups.Tulane Lecture Notes, Tulane University, 1970. Zbl 1058.06019
Reference: [3] Conrad P.: Free lattice-ordered groups.J. of Algebra 16 (1970), 191-203. Zbl 0213.31502, MR 0270992
Reference: [4] Holland W.C., Scringer E.: Free products of lattice-ordered groups.Algebra Universalis 2 (1972), 247-254. MR 0319843
Reference: [5] Glass A.M.W., Holland W.C.: Lattice-Ordered Groups (Advances and Techniques).Kluwer Academic Publishers, 1989. Zbl 0705.06001, MR 1036072
Reference: [6] Grätzer G.: Universal Algebra.2nd ed., Springer-Verlag, New York, 1979. MR 0538623
Reference: [7] Martinez J.: Free products in varieties of lattice-ordered groups.Czech. Math. J. 22 (1972), 535-553. Zbl 0247.06022, MR 0311536
Reference: [8] Martinez J.: Free products of abelian $\ell $-groups.Czech. Math. J. 23 (1973), 349-361. MR 0371770
Reference: [9] Martinez J. (ed.): Ordered Algebraic Structure.Kluwer Academic Publishers, 1989, pp. 11-49. MR 1094821
Reference: [10] Powell W.B., Tsinakis C.: Free products of abelian $\ell $-groups are cardinally indecomposable.Proc. A.M.S. 86 (1982), 385-390. MR 0671199
Reference: [11] Powell W.B., Tsinakis C.: Free products in the class of abelian $\ell $-groups.Pacific J. Math. 104 (1983), 429-442. MR 0684301
Reference: [12] Powell W.B., Tsinakis C.: The distributive lattice free products as a sublattice of the abelian $\ell $-group free product.J. Austral. Math. Soc. 34 (1993), 92-100. MR 0683181
Reference: [13] Powell W.B., Tsinakis C.: Free products of lattice-ordered groups.Algebra Universalis 18 (1984), 178-198. Zbl 0545.06007, MR 0743466
Reference: [14] Powell W.B., Tsinakis C.: Disjointness conditions for free products of $\ell $-groups.Arkiv. der Math. 46 (1986), 491-498. Zbl 0578.06012, MR 0849853
Reference: [15] Powell W.B., Tsinakis C.: Disjoint sets in free products of representable $\ell $-groups.Proc. A.M.S. 104 (1988), 1014-1020. MR 0931736
Reference: [16] Dao-Rong Ton: Free weak Hamiltonian $\ell $-groups.Northeast Mathematics 10 (2) (1994), 235-240.
Reference: [17] Weinberg E.C.: Free lattice-ordered abelian groups.Math. Ann. 151 (1963), 187-199. Zbl 0114.25801, MR 0153759
Reference: [18] Weinberg E.C.: Free lattice-ordered abelian groups II.Math. Ann. 159 (1965), 217-222. Zbl 0138.26201, MR 0181668
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_35-1994-4_3.pdf 227.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo