Previous |  Up |  Next

Article

Title: On the extremality of regular extensions of contents and measures (English)
Author: Adamski, Wolfgang
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 213-218
.
Category: math
.
Summary: Let $\Cal A$ be an algebra and $\Cal K$ a lattice of subsets of a set $X$. We show that every content on $\Cal A$ that can be approximated by $\Cal K$ in the sense of Marczewski has an extremal extension to a $\Cal K$-regular content on the algebra generated by $\Cal A$ and $\Cal K$. Under an additional assumption, we can also prove the existence of extremal regular measure extensions. (English)
Keyword: regular content
Keyword: lattice
Keyword: semicompact
Keyword: sequentially dominated
MSC: 28A12
MSC: 46E27
idZBL: Zbl 0834.28001
idMR: MR1357522
.
Date available: 2009-01-08T18:17:21Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118749
.
Reference: [1] Adamski W.: On regular extensions of contents and measures.J. Math. Anal. Appl. 127 (1987), 211-225. Zbl 0644.28002, MR 0904223
Reference: [2] Adamski W.: On extremal extensions of regular contents and measures.Proc. Amer. Math. Soc. 121 (1994), 1159-1164. Zbl 0817.28002, MR 1204367
Reference: [3] Bierlein D., Stich W.J.A.: On the extremality of measure extensions.Manuscripta Math. 63 (1989), 89-97. Zbl 0663.28004, MR 0975471
Reference: [4] Hackenbroch W.: Measures admitting extremal extensions.Arch. Math. 49 (1987), 257-266. Zbl 0612.28002, MR 0906740
Reference: [5] Lipecki Z.: Components in vector lattices and extreme extensions of quasi-measures and measures.Glasgow Math. J. 35 (1993), 153-162. Zbl 0786.28002, MR 1220557
Reference: [6] Los J., Marczewski E.: Extensions of measure.Fund. Math. 36 (1949), 267-276. Zbl 0039.05202, MR 0035327
Reference: [7] Marczewski E.: On compact measures.Fund. Math. 40 (1953), 113-124. Zbl 0052.04902, MR 0059994
Reference: [8] Pfanzagl J., Pierlo W.: Compact systems of sets.Lecture Notes in Math., Vol. 16, SpringerVerlag, 1966. Zbl 0161.36604, MR 0216529
Reference: [9] Plachky D.: Extremal and monogenic additive set functions.Proc. Amer. Math. Soc. 54 (1976), 193-196. Zbl 0285.28005, MR 0419711
Reference: [10] Schwartz L.: Radon measures on arbitrary topological spaces and cylindrical measures.Oxford UP, 1973. Zbl 0298.28001, MR 0426084
Reference: [11] von Weizsäcker H.: Remark on extremal measure extensions.Lecture Notes in Math., Vol. 794, Springer-Verlag, 1980. MR 0577962
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_1.pdf 191.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo