Previous |  Up |  Next

Article

Title: Singular quadratic functionals of one dependent variable (English)
Author: Došlá, Zuzana
Author: Došlý, Ondřej
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 2
Year: 1995
Pages: 219-237
.
Category: math
.
Summary: Singular quadratic functionals of one dependent variable with nonseparated boundary conditions are investigated. Necessary and sufficient conditions for nonnegativity of these functionals are derived using the concept of {\it coupled point} and {\it singularity condition}. The paper also includes two comparison theorems for coupled points with respect to the various boundary conditions. (English)
Keyword: quadratic functional
Keyword: singular quadratic functional
Keyword: periodic and antiperiodic boundary condition
Keyword: conjugate point
Keyword: coupled point
Keyword: singularity condition
MSC: 34A10
MSC: 34C10
MSC: 49B10
MSC: 49K05
MSC: 49N10
idZBL: Zbl 0838.34036
idMR: MR1357523
.
Date available: 2009-01-08T18:17:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118750
.
Reference: [1] Coppel W.A.: Disconjugacy.Lectures Notes in Math. 220 Springer Verlag, 1971. Zbl 0224.34003, MR 0460785
Reference: [2] Došlá Z., Došlý O.: On transformations of singular quadratic functionals corresponding to the equation $(py')'+qy=0$.Arch. Math. 24 (1988), 75-82. MR 0983225
Reference: [3] Došlá Z., Zezza P.: Singular quadratic functionals with variable end point.Comment. Math. Univ. Carolinae 33 (1992), 411-425. MR 1209284
Reference: [4] Došlá Z., Zezza P.: Coupled points in the calculus of variations and optimal control theory via the quadratic form theory.Diff. Equations and Dynamical Systems 2 (1994), 137-152. MR 1386044
Reference: [5] Hestenes M.G.: Applications of the theory of quadratic forms in Hilbert space to the calculus of variations.Pacific J. Math 1 (1951), 525-581. Zbl 0045.20806, MR 0046590
Reference: [6] Leighton W., Morse M.: Singular quadratic functionals.Trans. Amer. Math. Soc. 40 (1936), 252-286. Zbl 0015.02701, MR 1501873
Reference: [7] Leighton W.: Principal quadratic functionals.Trans. Amer. Math. Soc. 67 (1949), 253-274. Zbl 0041.22404, MR 0034535
Reference: [8] Leighton W., Martin A.D.: Quadratic functionals with a singular end point.Trans. Amer. Math. Soc. 78 (1955), 98-128. Zbl 0064.35401, MR 0066570
Reference: [9] Reid W.T.: Sturmian theory for ordinary differential equations.Springer Verlag, 1980. Zbl 0459.34001, MR 0606199
Reference: [10] Stein J.: Hilbert space and variational methods for singular selfadjoint systems of differential equations.Bull. Amer. Math. Soc. 80 (1974), 744-747. Zbl 0289.34039, MR 0417486
Reference: [11] Tomastik E.C.: Singular quadratic functionals of $n$ dependent variables.Trans. Amer. Math. Soc. 124 (1966), 60-76. Zbl 0161.09503, MR 0196556
Reference: [12] Tomastik E.C.: Principal quadratic functionals.Trans. Amer. Math. Soc. 218 (1976), 297-309. Zbl 0346.49013, MR 0405208
Reference: [13] Zeidan V., Zezza P.: Coupled points in the calculus of variations and applications to periodic problems.Trans. Amer. Math. Soc. 315 (1989), 323-335. Zbl 0677.49020, MR 0961599
Reference: [14] Zeidan V., Zezza P.: Variable end points in the calculus of variations: Coupled points.in ``Analysis and Optimization of Systems'', A. Bensoussan, J.L. Lions eds., Lectures Notes in Control and Information Sci. 111, Springer Verlag, Heidelberg, 1988. MR 0956284
Reference: [15] Zezza P.: The Jacobi condition for elliptic forms in Hilbert spaces,.JOTA 76 (1993), 357-380. MR 1203907
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-2_2.pdf 267.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo