Previous |  Up |  Next

Article

Title: An inequality for the coefficients of a cosine polynomial (English)
Author: Alzer, Horst
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 3
Year: 1995
Pages: 427-428
.
Category: math
.
Summary: We prove: If $$ \frac 12+\sum_{k=1}^{n}a_k(n)\cos (kx)\geq 0 \text{ for all } x\in [0,2\pi ), $$ then $$ 1-a_k(n)\geq \frac 12 \frac{k^2}{n^2} \text{ for } k=1,\dots ,n. $$ The constant $1/2$ is the best possible. (English)
Keyword: cosine polynomials
Keyword: inequalities
MSC: 26D05
MSC: 42A05
idZBL: Zbl 0833.26012
idMR: MR1364482
.
Date available: 2009-01-08T18:19:01Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118770
.
Reference: [1] DeVore R.A.: Saturation of positive convolution operators.J. Approx. Th. 3 (1970), 410-429. Zbl 0243.42024, MR 0271612
Reference: [2] Stark E.L.: Über trigonometrische singuläre Faltungsintegrale mit Kernen endlicher Oszillation.Dissertation, TH Aachen, 1970.
Reference: [3] Stark E.L.: Inequalities for trigonometric moments and for Fourier coefficients of positive cosine polynomials in approximation.Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544-576 (1976), 63-76. MR 0438017
Reference: [4] Szegö G.: Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen.Math. Annalen 96 (1926-27), 601-632.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-3_3.pdf 149.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo