Previous |  Up |  Next

Article

Title: Topological properties of the solution set of integrodifferential inclusions (English)
Author: Avgerinos, Evgenios P.
Author: Papageorgiou, Nikolaos S.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 3
Year: 1995
Pages: 429-442
.
Category: math
.
Summary: In this paper we examine nonlinear integrodifferential inclusions in $\Bbb R^N$. For the nonconvex problem, we show that the solution set is a retract of the Sobolev space $W^{1,1}(T,{\Bbb R^N})$ and the retraction can be chosen to depend continuously on a parameter $\lambda $. Using that result we show that the solution multifunction admits a continuous selector. For the convex problem we show that the solution set is a retract of $C(T,{\Bbb R^N})$. Finally we prove some continuous dependence results. (English)
Keyword: retract
Keyword: absolute retract
Keyword: path-connected
Keyword: Vietoris continuous
Keyword: $h$-continuous
Keyword: orientor field
MSC: 34A60
MSC: 34K30
MSC: 45K05
idZBL: Zbl 0836.34019
idMR: MR1364483
.
Date available: 2009-01-08T18:19:07Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118771
.
Reference: [1] Avgerinos E.P.: On the existence of solutions for Volterra integrable inclusions in Banach spaces.Jour. Appl. Math. and Stoch. Anal. 6 (1993), 261-270. MR 1238603
Reference: [2] Bressan A., Cellina A., Fryszkowski A.: A class of absolute retracts in spaces of integrable functions.Proc. Amer. Math. Soc. 112 (1991), 413-418. Zbl 0747.34014, MR 1045587
Reference: [3] Cellina A.: On the set of solutions to Lipschitzian differential inclusions.Diff. and Integral Equations 1 (1988), 495-500. Zbl 0723.34009, MR 0945823
Reference: [4] DeBlasi F.S., Myjak J.: On the solution set for differential inclusions.Bull. Pol. Acad. Sci. 33 (1985), 17-23.
Reference: [5] DeBlasi F.S., Myjak J.: On continuous approximations for multifunctions.Pacific Journal of Math. 123 (1986), 9-31. MR 0834135
Reference: [6] DeBlasi F.S., Pianigiani G., Staicu V.: On the Solution Sets of Some Nonconvex Hyperbolic Differential Inclusions.Università degli Studi di Roma, Prepr. 117, Oct. 1992.
Reference: [7] Dugundji J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0397.54003, MR 0193606
Reference: [8] Gorniewicz L.: On the solution set of differential inclusions.JMAA 113 (1986), 235-247. MR 0826673
Reference: [9] Hiai F., Umegaki H.: Integrals conditional expectations and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504
Reference: [10] Himmelberg C., Van Fleck F.: A note on the solution sets of differential inclusions.Rocky Mountain J. Math. 12 (1982), 621-625. MR 0683856
Reference: [11] Klein E., Thompson A.: Theory of Correspondences.Wiley, New York, 1984. Zbl 0556.28012, MR 0752692
Reference: [12] Kuratowski K.: Topology II.Academic Press, London, 1966. MR 0217751
Reference: [13] Levin V.: Borel sections of many valued maps.Siberian Math. J. 19 (1979), 434-438. Zbl 0409.54048
Reference: [14] Nadler S.B.: Multivalued contraction mappings.Pacific J. Math. 30 (1969), 475-483. MR 0254828
Reference: [15] Pachpatte B.G.: A note on Gronwall-Bellman inequality.J. Math. A.A. 44 (1973), 758-762. Zbl 0274.45011, MR 0335721
Reference: [16] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions.Intern. J. Math. Sci. 10 (1987), 433-442. Zbl 0619.28009, MR 0896595
Reference: [17] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations.Math. Japonica 32 (1987), 437-464. Zbl 0634.28005, MR 0914749
Reference: [18] Papageorgiou N.S.: Decomposable sets in the Lebesgue-Bochner spaces.Comment. Math. Univ. Sancti Pauli 37 (1988), 49-62. Zbl 0679.46032, MR 0942305
Reference: [19] Papageorgiou N.S.: Existence of solutions for integrodifferential inclusions in Banach spaces.Comment. Math. Univ. Carolinae 32 (1991), 687-696. Zbl 0746.34035, MR 1159815
Reference: [20] Ricceri B.: Une propriété topologique de l'ensemble des points fixes d'une contraction multivoque à valeurs convexes.Atti. Acad. Naz. Linci. U. Sci. Fiz. Math. Nat. 81 (1987), 283-286. Zbl 0666.47030, MR 0999821
Reference: [21] Rybinski L.: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions.JMAA 160 (1991), 24-46. Zbl 0735.34016, MR 1124074
Reference: [22] Staicu V.: On a non-convex hyperbolic differential inclusion.Proc. Edinb. Math. Soc., in press. Zbl 0769.34018
Reference: [23] Tsukada M.: Convergence of best approximations in a smooth Banach space.Journal of Approx. Theory 40 (1984), 301-309. Zbl 0545.41042, MR 0740641
Reference: [24] Wagner D.: Surveys of measurable selection theorems.SIAM J. Control. Optim. 15 (1977), 857-903. MR 0486391
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-3_4.pdf 247.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo