| Title: | Extensions of linear operators from hyperplanes of $l^{(n)}_\infty$ (English) | 
| Author: | Baronti, Marco | 
| Author: | Fragnelli, Vito | 
| Author: | Lewicki, Grzegorz | 
| Language: | English | 
| Journal: | Commentationes Mathematicae Universitatis Carolinae | 
| ISSN: | 0010-2628 (print) | 
| ISSN: | 1213-7243 (online) | 
| Volume: | 36 | 
| Issue: | 3 | 
| Year: | 1995 | 
| Pages: | 443-458 | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $Y \subset l^{(n)}_{\infty }$ be a hyperplane and let $A \in {\Cal L}(Y)$ be given. Denote $$ \align {\Cal A} = & \{L\in {\Cal L}(l^{(n)}_{\infty },Y):L\mid Y = A\} \text{ and} \ & \lambda_{A} = \inf \{\parallel L \parallel : L\in {\Cal A}\}. \endalign $$ In this paper the problem of calculating of the constant $\lambda_{A}$ is studied. We present a complete characterization of those $A \in {\Cal L}(Y)$ for which $\lambda_{A} = \parallel A \parallel $. Next we consider the case $\lambda_{A} > \parallel A \parallel $. Finally some computer examples will be presented. (English) | 
| Keyword: | linear operator | 
| Keyword: | extension of minimal norm | 
| Keyword: | element of best approximation | 
| Keyword: | strongly unique best approximation | 
| MSC: | 41A35 | 
| MSC: | 41A52 | 
| MSC: | 41A55 | 
| MSC: | 41A65 | 
| MSC: | 46A22 | 
| MSC: | 47A20 | 
| idZBL: | Zbl 0831.41014 | 
| idMR: | MR1364484 | 
| . | 
| Date available: | 2009-01-08T18:19:11Z | 
| Last updated: | 2012-04-30 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/118772 | 
| . | 
| Reference: | [1] Baronti M., Papini P.L.: Norm one projections onto subspaces of $l^p$.Ann. Mat. Pura Appl. IV (1988), 53-61. MR 0980971 | 
| Reference: | [2] Blatter J., Cheney E.W.: Minimal projections onto hyperplanes in sequence spaces.Ann. Mat. Pura Appl. 101 (1974), 215-227. MR 0358179 | 
| Reference: | [3] Collins H.S., Ruess W.: Weak compactness in spaces of compact operators and vector valued functions.Pacific J. Math. 106 (1983), 45-71. MR 0694671 | 
| Reference: | [4] Odyniec Wl., Lewicki G.: Minimal Projections in Banach Spaces.Lecture Notes in Math. 1449, Springer-Verlag. Zbl 1062.46500, MR 1079547 | 
| Reference: | [5] Singer I.: On the extension of continuous linear functionals....Math. Ann. 159 (1965), 344-355. Zbl 0141.12002, MR 0188758 | 
| Reference: | [6] Singer I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Springer-Verlag, Berlin, Heidelberg, New York, 1970. Zbl 0197.38601, MR 0270044 | 
| Reference: | [7] Sudolski J., Wojcik A.: Some remarks on strong uniqueness of best approximation.Approximation Theory and its Applications 6 (1990), 44-78. Zbl 0704.41016, MR 1078687 | 
| . |