Previous |  Up |  Next

Article

Title: Normal integrands and related classes of functions (English)
Author: Kucia, Anna
Author: Nowak, Andrzej
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 36
Issue: 4
Year: 1995
Pages: 775-781
.
Category: math
.
Summary: Let $D\subset T\times X$, where $T$ is a measurable space, and $X$ a topological space. We study inclusions between three classes of extended real-valued functions on $D$ which are upper semicontinuous in $x$ and satisfy some measurability conditions. (English)
Keyword: normal integrand
Keyword: Carathéodory function
MSC: 28A20
MSC: 28B20
MSC: 54C30
idZBL: Zbl 0883.54022
idMR: MR1378698
.
Date available: 2009-01-08T18:21:37Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118804
.
Reference: [1] Ash R.B.: Real Analysis and Probability.Academic Press, New York, 1972. MR 0435320
Reference: [2] Berliocchi H., Lasry J.-M.: Intégrandes normales et mesures paramétrées en calcul de variations.Bull. Soc. Math. France 101 (1973), 129-184. MR 0344980
Reference: [3] Burgess J., Maitra A.: Nonexistence of measurable optimal selections.Proc. Amer. Math. Soc. 116 (1992), 1101-1106. Zbl 0767.28010, MR 1120505
Reference: [4] Christensen J.P.R.: Topology and Borel Structure.North Holland, Amsterdam, 1974. Zbl 0273.28001, MR 0348724
Reference: [5] Himmelberg C.J.: Measurable relations.Fund. Math. 87 (1975), 53-72. Zbl 0296.28003, MR 0367142
Reference: [6] Kucia A.: Some counterexamples for Carathéodory functions and multifunctions.submitted to Fund. Math.
Reference: [7] Kucia A., Nowak A.: On Baire approximations of normal integrands.Comment. Math. Univ. Carolinae 30:2 (1989), 373-376. Zbl 0685.28001, MR 1014136
Reference: [8] Kucia A., Nowak A.: Relations among some classes of functions in mathematical programming.Mat. Metody Sots. Nauk 22 (1989), 29-33. Zbl 0742.49009, MR 1111399
Reference: [9] Levin V.L.: Measurable selections of multivalued mappings into topological spaces and upper envelopes of Carathéodory integrands (in Russian).Dokl. Akad. Nauk SSSR 252 (1980), 535-539 English transl.: Sov. Math. Dokl. 21 (1980), 771-775. MR 0577834
Reference: [10] Levin V.L.: Convex Analysis in Spaces of Measurable Functions and its Applications to Mathematics and Economics (in Russian).Nauka, Moscow, 1985. MR 0809179
Reference: [11] Pappas G.S.: An approximation result for normal integrands and applications to relaxed controls theory.J. Math. Anal. Appl. 93 (1983), 132-141. Zbl 0521.49012, MR 0699706
Reference: [12] Rockafellar R.T.: Integral functionals, normal integrands and measurable selections.in: Nonlinear Operators and Calculus of Variations (L. Waelbroeck, ed.), Lecture Notes in Mathematics 543, Springer, Berlin, 1976, pp. 157-207. Zbl 0374.49001, MR 0512209
Reference: [13] Schäl M.: A selection theorem for optimization problem.Arch. Math. 25 (1974), 219-224. MR 0346632
Reference: [14] Wagner D.H.: Survey of measurable selection theorems.SIAM J. Control 15 (1977), 859-903. Zbl 0407.28006, MR 0486391
Reference: [15] Zygmunt W.: Scorza-Dragoni property (in Polish).UMCS, Lublin, 1990.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_36-1995-4_15.pdf 194.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo