Previous |  Up |  Next

Article

Title: A Tauberian theorem for distributions (English)
Author: Čížek, Jiří
Author: Jelínek, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 479-488
.
Category: math
.
Summary: The well-known general Tauberian theorem of N. Wiener is formulated and proved for distributions in the place of functions and its Ganelius' formulation is corrected. Some changes of assumptions of this theorem are discussed, too. (English)
Keyword: Tauberian theorem
Keyword: distribution
Keyword: convolution
Keyword: Fourier transform
MSC: 40E05
MSC: 42A38
MSC: 44A35
MSC: 46F05
MSC: 46F10
idZBL: Zbl 0881.40006
idMR: MR1426912
.
Date available: 2009-01-08T18:25:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118854
.
Reference: [1] Dierolf P., Voigt J.: Convolutions and $S'$-convolutions of distributions.Collect. Math. 29 (1978), 185-196. MR 0565276
Reference: [2] Ganelius T.H.: Tauberian Remainder Theorems.Lecture Notes in Math. 232 (1971), 75. Zbl 0222.40001, MR 0499898
Reference: [3] Grothendieck A.: Produits Tensoriels topologiques et espaces nuclaires.Memoirs of the AMS 16 (1966), 196+140. MR 0075539
Reference: [4] Hardy G.H.: Divergent Series.Oxford (1949). Zbl 0032.05801, MR 0030620
Reference: [5] Horvth J.: Topological Vector Spaces and Distributions.Addison-Wesley Publishing Company (1966), 449.
Reference: [6] Hirata, Ogata: On the exchange formula for distributions.J. Sci. Hiroshima Univ. Ser. A 22 (1958), 147-152. MR 0110014
Reference: [7] Itano M.: On the theory of multiplicative products of distributions.J. Sci. Hiroshima Univ. Ser. A-I 30 (1966), 151-181. MR 0209835
Reference: [8] Kamiński A.: Convolution, product and Fourier transform of distributions.Stud. Math 74 (1982), 83-96. MR 0675434
Reference: [9] Oberguggenberger M.: Multiplication of Distributions and Applications to Partial Differential Equations.Institut für Mathematik und Geometrie, Universität Innsbruck, Austria, 1992, p. 312. Zbl 0818.46036, MR 1187755
Reference: [10] Pilipović S., Stanković B.: Wiener Tauberian theorems for distributions.J. London Math. Society, Second Series 47.3 (1993), 507-515. MR 1214912
Reference: [11] Shiraishi R.: On the definition of convolutions for distributions.J. Sci. Hiroshima Univ. Ser. A 23.1 (April 1959), 19-32. Zbl 0091.28601, MR 0114122
Reference: [12] Schwartz L.: Theorie des distributions I, II.Herman, Paris (1957). MR 0209834
Reference: [13] Wiener N.: Tauberian theorems.Ann. of Math. (2) 33 (1932), 1-100. Zbl 0005.25003, MR 1503035
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_5.pdf 219.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo