Previous |  Up |  Next

Article

Title: Fréchet directional differentiability and Fréchet differentiability (English)
Author: Giles, J. R.
Author: Sciffer, Scott
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 37
Issue: 3
Year: 1996
Pages: 489-497
.
Category: math
.
Summary: Zaj'\i ček has recently shown that for a lower semi-continuous real-valued function on an Asplund space, the set of points where the function is Fréchet subdifferentiable but not Fréchet differentiable is first category. We introduce another variant of Fréchet differentiability, called Fréchet directional differentiability, and show that for any real-valued function on a normed linear space, the set of points where the function is Fréchet directionally differentiable but not Fréchet differentiable is first category. (English)
Keyword: G\^ateaux and Fréchet subdifferentiability
Keyword: directional differentiability
Keyword: strict and intermediate differentiability
MSC: 46G05
MSC: 58C20
idZBL: Zbl 0881.58011
idMR: MR1426913
.
Date available: 2009-01-08T18:25:34Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118855
.
Reference: [BP] Borwein J.M., Preiss D.: A smooth variational principle with applications to subdifferentiability and to differentiability of convex functions.Trans. Amer. Math. Soc. 303 (1987), 517-527. Zbl 0632.49008, MR 0902782
Reference: [CP] Contreras M.D., Paya R.: On upper semi-continuity of duality mappings.Proc. Amer. Math. Soc. 121 (1994), 451-459. MR 1215199
Reference: [FP] Fabian M., Preiss D.: On intermediate differentiability of Lipschitz functions on certain spaces.Proc. Amer. Math. Soc. 113 (1991), 733-740. MR 1074753
Reference: [GM] Giles J.R., Moors W.B.: Generic continuity of restricted weak upper semi-continuous set-valued mappings.Set-valued Analysis, to appear. Zbl 0852.54018, MR 1384248
Reference: [GS1] Giles J.R., Scott Sciffer: Continuity characterizations of differentiability of locally Lipschitz functions.Bull. Austral. Math. Soc. 41 (1990), 371-380. MR 1071037
Reference: [GS2] Giles J.R., Scott Sciffer: Locally Lipschitz functions are generically pseudo-regular on separable Banach spaces.Bull. Austral. Math. Soc. 47 (1993), 203-210. MR 1210135
Reference: [M] Marcus S.: Sur les fonctions dérivées, intégrables, au sens de Riemann et sur les dérivées partialles mixtes.Proc. Amer. Math. Soc. 9 (1958), 973-978. MR 0103243
Reference: [Ph] Phelps R.R.: Convex Functions, Monotone Operators and Differentiability.Springer- Verlag, Lecture Notes in Math. 1364, 2nd ed., 1993. Zbl 0921.46039, MR 1238715
Reference: [Z1] Zajíček L.: Strict differentiability via differentiability.Act. U. Carol. 28 (1987), 157-159. MR 0932752
Reference: [Z2] Zajíček L.: Fréchet differentiability, strict differentiability and subdifferentiability.Czech. Math. J. 41 (1991), 471-489. MR 1117801
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_37-1996-3_6.pdf 201.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo