Previous |  Up |  Next

Article

Keywords:
dual space; $\ell^1$-saturated spaces
Summary:
It is shown that there exists a Banach space with an unconditional basis which is not $c_0$-saturated, but whose dual is $\ell^1$-saturated.
References:
[1] Carothers N.L., Dilworth S.J.: Subspaces of $L^{p,q}$. Proc. Amer. Math. Soc. 104 (1988), 537-545. MR 0962825
[2] Leung D.H.: On $c_0$-saturated Banach spaces. Illinois J. Math. 39 (1995), 15-29. MR 1299646
[3] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces I. Springer-Verlag, 1977. MR 0500056 | Zbl 0362.46013
[4] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces II. Springer-Verlag, 1979. MR 0540367 | Zbl 0403.46022
Partner of
EuDML logo