Previous |  Up |  Next

Article

Title: On variations of functions of one real variable (English)
Author: Pfeffer, Washek F.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 61-71
.
Category: math
.
Summary: We discuss variations of functions that provide conceptually similar descriptive definitions of the Lebesgue and Denjoy-Perron integrals. (English)
Keyword: Lebesgue integral
Keyword: Denjoy-Perron integral
Keyword: variational measure
MSC: 26A39
MSC: 26A42
MSC: 26A45
idZBL: Zbl 0888.26006
idMR: MR1455470
.
Date available: 2009-01-08T18:29:05Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118902
.
Reference: [1] Bongiorno B., Pfeffer W.F., Thomson B.S.: A full descriptive definition of the gage integral.Canadian Math. Bull., in press. Zbl 0885.26008, MR 1426684
Reference: [2] Bongiorno B., Di Piazza L., Skvortsov V.: A new full descriptive characterization of Denjoy-Perron integral.to appear. Zbl 0879.26026
Reference: [3] Buczolich Z., Pfeffer W.F.: Variations of additive functions.Czechoslovak Math. J., in press. Zbl 0903.26004, MR 1461431
Reference: [4] Engelking R.: General Topology.PWN, Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [5] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Amer. Math. Soc., Providence, 1994. Zbl 0807.26004, MR 1288751
Reference: [6] Henstock R.: A Riemann type integral of Lebesgue power.Canadian J. Math. 20 (1968), 79-87. Zbl 0171.01804, MR 0219675
Reference: [7] Howard E.J.: Analyticity of almost everywhere differentiable functions.Proc. Amer. Math. Soc. 110 (1990), 745-753. Zbl 0705.30001, MR 1027093
Reference: [8] Kurzweil J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czechoslovak Math. J. 82 (1957), 418-446. Zbl 0090.30002, MR 0111875
Reference: [9] Kurzweil J., Jarník J.: Differentiability and integrability in $n$ dimensions with respect to $\alpha $-regular intervals.Results Math. 21 (1992), 138-151. MR 1146639
Reference: [10] McShane E.J.: A unified theory of integration.Amer. Math. Monthly 80 (1973), 349-359. Zbl 0266.26008, MR 0318434
Reference: [11] Novikov A., Pfeffer W.F.: An invariant Riemann type integral defined by figures.Proc. Amer. Math. Soc. 120 (1994), 849-853. MR 1182703
Reference: [12] Pfeffer W.F.: The Riemann Approach to Integration.Cambridge Univ. Press, New York, 1993. Zbl 1143.26005, MR 1268404
Reference: [13] Pfeffer W.F.: Lectures on geometric integration and the divergence theorem.Rend. Mat. Univ. Trieste 23 (1991), 263-314. Zbl 0789.26007, MR 1248655
Reference: [14] Rudin W.: Real and Complex Analysis.McGraw-Hill, New York, 1987. Zbl 1038.00002, MR 0924157
Reference: [15] Thomson B.S.: Derivatives of Interval Functions.Mem. Amer. Math. Soc., #452, Providence, 1991. MR 1078198
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_5.pdf 221.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo