Previous |  Up |  Next

Article

Title: Isometric classification of norms in rearrangement-invariant function spaces (English)
Author: Randrianantoanina, Beata
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 73-90
.
Category: math
.
Summary: Suppose that a real nonatomic function space on $[0,1]$ is equipped with two re\-arran\-ge\-ment-invariant norms $\|\cdot\|$ and $|\kern -0.5pt |\kern -0.5pt |\cdot|\kern -0.5pt |\kern -0.5pt |$. We study the question whether or not the fact that $(X,\|\cdot\|)$ is isometric to $(X,|\kern -0.5pt |\kern -0.5pt |\cdot|\kern -0.5pt |\kern -0.5pt |)$ implies that $\|f\|= |\kern -0.5pt |\kern -0.5pt |f|\kern -0.5pt |\kern -0.5pt |$ for all $f$ in $X$. We show that in strictly monotone Orlicz and Lorentz spaces this is equivalent to asking whether or not the norms are defined by equal Orlicz functions, resp\. Lorentz weights. We show that the above implication holds true in most rearrangement-invariant spaces, but we also identify a class of Orlicz spaces where it fails. We provide a complete description of Orlicz functions $\varphi \neq\psi$ with the property that $L_\varphi$ and $L_\psi$ are isometric. (English)
Keyword: isometries
Keyword: rearrangement-invariant function spaces
Keyword: Orlicz spaces
Keyword: Lorentz spaces
MSC: 46B04
MSC: 46E30
idZBL: Zbl 0886.46007
idMR: MR1455471
.
Date available: 2009-01-08T18:29:09Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118903
.
Reference: [1] Abramovich Y.A., Zaidenberg M.: Rearrangement invariant spaces.Notices Amer. Math. Soc. 26(2):A (1979), 207.
Reference: [2] Abramovich Y.A., Zaidenberg M.: A rearrangement invariant space isometric to $L_p$ coincides with $L_p$.in: N.J. Kalton and E. Saab, editors, Interaction between Functional Analysis, Harmonic Analysis, and Probability, pp. 13-18, Lect. Notes in Pure Appl. Math. 175, Marcel Dekker, New York, 1995. MR 1358141
Reference: [3] Baron K., Hudzik H.: Orlicz spaces which are $L_p$-spaces.Aequationes Math. 48 (1994), 254-261. MR 1295094
Reference: [4] Carothers N.L., Haydon R.G., Lin P.K.: On the isometries of the Lorentz space $L_{w,p}$.Israel J. Math. 84 (1993), 265-287. MR 1244671
Reference: [5] Hudzik H., Kurc W., Wisła M.: Strongly extreme points in Orlicz function spaces.J. Math. Anal. and Appl. 189 (1995), 651-670. MR 1312545
Reference: [6] Jamison J., Kamińska A., Lin P.K.: Isometries in Musielak-Orlicz spaces II.Studia Math. 104 (1993), 75-89. MR 1208040
Reference: [7] Kalton N.J., Randrianantoanina B.: Surjective isometries of rearrangement-invariant spaces.Quart. J. Math. Oxford 45 (1994), 301-327. MR 1295579
Reference: [8] Krasnosel'skii M.A., Rutickii Ya.B.: Convex Functions and Orlicz Spaces.P. Noordhoff LTD., Groningen, The Netherlands, 1961. MR 0126722
Reference: [9] Lacey H.E., Wojtaszczyk P.: Banach lattice structures on separable $L_p$-spaces.Proc. Amer. Math. Soc. 54 (1976), 83-89. Zbl 0317.46027, MR 0390743
Reference: [10] Lamperti J.: On the isometries of some function spaces.Pacific J. Math. 8 (1958), 459-466. MR 0105017
Reference: [11] Lin P.K.: Elementary isometries of rearrangement invariant spaces.preprint.
Reference: [12] Lindenstrauss J., Tzafriri L.: Classical Banach Spaces, Vol. 2, Function Spaces.SpringerVerlag, Berlin-Heidelberg-New York, 1979. MR 0540367
Reference: [13] Montgomery-Smith S.J.: Comparison of Orlicz-Lorentz spaces.Studia Math. 11 (1993), 679-698. MR 1199324
Reference: [14] Zaidenberg M.G.: A representation of isometries on function spaces.I Prépublication de l'Institut Fourier des Mathématiques, 305, Grenoble, 1995. Zbl 0905.47023
Reference: [15] Zaidenberg M.G.: Groups of isometries of Orlicz spaces.Soviet Math. Dokl. 17 (1976), 432-436. Zbl 0345.46028
Reference: [16] Zaidenberg M.G.: On the isometric classification of symmetric spaces.Soviet Math. Dokl. 18 (1977), 636-640. MR 0442667
Reference: [17] Zaidenberg M.G.: Special representations of isometries of function spaces (in Russian).Investigations on the theory of functions of several real variables, Yaroslavl, 1980.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_6.pdf 289.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo