Previous |  Up |  Next

Article

Title: Nonconcentrating generalized Young functionals (English)
Author: Roubíček, Tomáš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 91-99
.
Category: math
.
Summary: The Young measures, used widely for relaxation of various optimization problems, can be naturally understood as certain functionals on suitable space of integrands, which allows readily various generalizations. The paper is focused on such functionals which can be attained by sequences whose ``energy'' (=$p$th power) does not concentrate in the sense that it is relatively weakly compact in $L^1(\Omega )$. Straightforward applications to coercive optimization problems are briefly outlined. (English)
Keyword: Young measures
Keyword: generalizations
Keyword: relative $L^1$-weak compactness
Keyword: coercive optimization problems
Keyword: nonconcentration of energy
MSC: 49J45
MSC: 49N60
idZBL: Zbl 0888.49027
idMR: MR1455472
.
Date available: 2009-01-08T18:29:16Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118904
.
Reference: [1] Acerbi E., Fusco N.: Semicontinuity problems in the calculus of variations.Archive Rat. Mech. Anal. 86 (1984), 125-145. Zbl 0565.49010, MR 0751305
Reference: [2] Ball J.M.: A version of the fundamental theorem for Young measures.in: PDEs and Continuum Models of Phase Transition (Eds. M. Rascle, D. Serre, M. Slemrod), Lecture Notes in Physics 344, Springer, Berlin, 1989, pp.207-215. Zbl 0991.49500, MR 1036070
Reference: [3] Ball J.M., Murat F.: Remarks on Chacon's biting lemma.Proc. Amer. Math. Soc. 107 (1989), 655-663. Zbl 0678.46023, MR 0984807
Reference: [4] Berliocchi H., Lasry J.-M.: Intégrandes normales et mesures paramétrées en calcul des variations.Bull. Soc. Math. France 101 (1973), 129-184. Zbl 0282.49041, MR 0344980
Reference: [5] Brooks J.K., Chacon R.V.: Continuity and compactness of measures.Adv. in Math. 37 (1980), 16-26. Zbl 0463.28003, MR 0585896
Reference: [6] Buttazzo G.: Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations.Pitman Res. Notes in Math. 207, Longmann, Harlow, 1989. Zbl 0669.49005, MR 1020296
Reference: [7] DiPerna R.J., Majda A.J.: Oscillations and concentrations in weak solutions of the incompressible fluid equations.Comm. Math. Physics 108 (1987), 667-689. Zbl 0626.35059, MR 0877643
Reference: [8] Dunford N., Pettis J.T.: Linear operators on summable functions.Trans. Amer. Math. Soc. 47 (1940), 323-392. MR 0002020
Reference: [9] Kinderlehrer D., Pedregal P.: Weak convergence of integrands and the Young measure representation.SIAM J. Math. Anal. 23 (1992), 1-19. Zbl 0757.49014, MR 1145159
Reference: [10] Kristensen J: Lower semicontinuity of variational integrals.Ph.D. Thesis, Math. Inst., Tech. Univ. of Denmark, Lungby, 1994.
Reference: [11] Kružík M., Roubíček T.: Explicit characterization of $L^p$-Young measures.J. Math. Anal. Appl. 198 (1996), 830-843. MR 1377827
Reference: [12] Kružík M., Roubíček T.: On the measures of DiPerna and Majda.Mathematica Bohemica, in print.
Reference: [13] Roubíček T.: Convex compactifications and special extensions of optimization problems.Nonlinear Analysis, Th., Methods, Appl. 16 (1991), 1117-1126. MR 1111622
Reference: [14] Roubíček T.: Relaxation in Optimization Theory and Variational Calculus.W. de Gruyter, Berlin, 1996, in print. MR 1458067
Reference: [15] Roubíček T., Hoffmann K.-H: Theory of convex local compactifications with applications to Lebesgue spaces.Nonlinear Analysis, Th., Methods, Appl. 25 (1995), 607-628. MR 1338806
Reference: [16] Tartar L.: Compensated compactness and applications to partial differential equations.in: Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriott-Watt Symposium IV, Pitman Res. Notes in Math. 39, San Francisco, 1979. Zbl 0437.35004, MR 0584398
Reference: [17] Valadier M.: Young measures.in: Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math. 1446, Springer, Berlin, 1990, pp.152-188. Zbl 1067.28001, MR 1079763
Reference: [18] Warga J.: Variational problems with unbounded controls.SIAM J. Control 3 (1965), 424-438. Zbl 0201.47803, MR 0194951
Reference: [19] Young L.C: Generalized curves and the existence of an attained absolute minimum in the calculus of variations.Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212-234. Zbl 0019.21901
Reference: [20] Young L.C.: Generalized surfaces in the calculus of variations.Ann. Math. 43 (1942), part I: 84-103, part II: 530-544. Zbl 0063.09081, MR 0006023
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_7.pdf 225.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo