Previous |  Up |  Next

Article

Title: Firmly pseudo-contractive mappings and fixed points (English)
Author: Sharma, B. K.
Author: Sahu, D. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 1
Year: 1997
Pages: 101-108
.
Category: math
.
Summary: We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space. (English)
Keyword: firmly pseudo-contractive mappings on nonconvex domains
Keyword: fixed points
MSC: 47H09
MSC: 47H10
idZBL: Zbl 0886.47033
idMR: MR1455473
.
Date available: 2009-01-08T18:29:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118905
.
Reference: [1] Browder F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces.Bull. Amer. Math. Soc. 73 (1967), 875-882. Zbl 0176.45302, MR 0232255
Reference: [2] Carbone A., Marino G.: Fixed points and almost fixed points of nonexpansive maps in Banach spaces.Riv. Mat. Univ. Parma (4) 13 (1987), 385-393. Zbl 0674.47037, MR 0977691
Reference: [3] Deimling K.: Zeros of accretive operators.Manuscripta Math. 13 (1974), 365-374. Zbl 0288.47047, MR 0350538
Reference: [4] Diestel J.: Geometry of Banach Spaces, Selected Topics.Lecture Notes in Math., Vol. 485, Springer-Verlag, Berlin, Heidelberg, New York, 1975. Zbl 0466.46021, MR 0461094
Reference: [5] Goebel K., Kuczumow T.: A contribution to the theory of nonexpansive mappings.Bull. Can. Math. Soc. 70 (1978), 355-357. Zbl 0437.47040, MR 0584472
Reference: [6] Kato T.: Nonlinear semigroups and evolution equations.J. Math. Soc. Japan 19 (1967), 508-520. Zbl 0163.38303, MR 0226230
Reference: [7] Kirk W.A., Ray W.O.: Fixed point theorem for mappings defined on unbounded sets in Banach spaces.Studio Math. 64 (1979), 127-138. MR 0537116
Reference: [8] Martin R.H.: Differential equations on closed subsets of a Banach space.Trans. Math. Soc. 81 (1981), 71-74.
Reference: [9] Ray W.O.: Zeros of accretive operators defined on unbounded sets.Houston J. Math. 5 (1979), 133-139. Zbl 0412.47032, MR 0533647
Reference: [10] Schu J.: Iterative approximation of fixed point of nonexpansive mappings with starshaped domain.Comment. Math. Univ. Carolinae 31.2 (1990), 277-282. MR 1077898
Reference: [11] Schu J.: Approximation of fixed points of asymptotically nonexpansive mappings.Proc. Amer. Math. Soc. 112 (1991), 143-151. MR 1039264
Reference: [12] Wang S.Z., Y B., Gao M., Iseki K.: Some fixed point theorems on expansion mappings.Math. Japon. 29 (1984), 631-636. Zbl 0554.54023, MR 0759452
Reference: [13] Williamson T.E.: A geometric approach to fixed points of nonself mapping $T:D\rightarrow X$.Contemp. Math. 18 (1983), 243-253. MR 0728603
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-1_8.pdf 190.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo