Previous |  Up |  Next

Article

Title: Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach (English)
Author: Drábek, Pavel
Author: Moudan, Zakaria
Author: Touzani, Abdelfettah
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 421-431
.
Category: math
.
Summary: The nonlinear eigenvalue problem for p-Laplacian $$ \cases - \operatorname{div} (a(x) |\nabla u|^{p-2} \nabla u) = \lambda g (x) |u|^{p-2} u \text{ in } \Bbb R^N, \ u >0 \text{ in } \Bbb R^N, \mathop{\lim}\limits_{|x|\to \infty} u(x) = 0, \endcases $$ is considered. We assume that $1 < p < N$ and that $g$ is indefinite weight function. The existence and $C^{1, \alpha}$-regularity of the weak solution is proved. (English)
Keyword: eigenvalue
Keyword: the p-Laplacian
Keyword: indefinite weight
Keyword: regularity
MSC: 35J65
MSC: 35J70
MSC: 35P30
MSC: 49J40
MSC: 49R50
idZBL: Zbl 0940.35150
idMR: MR1485065
.
Date available: 2009-01-08T18:35:15Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118942
.
Reference: [1] Adams R.A.: Sobolev Spaces.Academic Press, 1975. Zbl 1098.46001, MR 0450957
Reference: [2] Allegretto W., Huang Y.X.: Eigenvalues of the indefinite weight p-Laplacian in weighted spaces.Funkc. Ekvac. 38 (1995), 233-242. Zbl 0922.35114, MR 1356326
Reference: [3] Drábek P.: Nonlinear eigenvalue for p-Laplacian in $\Bbb R^N$.Math. Nach 173 (1995), 131-139. MR 1336957
Reference: [4] Drábek, Huang Y.X.: Bifurcation problems for the p-Laplacian in $\Bbb R^N$.to appear in Trans. of AMS.
Reference: [5] Fleckinger J., Manasevich R.F., Stavrakakis N.M., de Thelin F.: Principal eigenvalues for some quasilinear elliptic equations on $\Bbb R^N$.preprint.
Reference: [6] Huang Y.X.: Eigenvalues of the p-Laplacian in $\Bbb R^N$ with indefinite weight.Comment. Math. Univ. Carolinae 36 (1995), 519-527. MR 1364493
Reference: [7] Lindqvist P.: On the equation ${div} (|\nabla u|^{p-2} \nabla u) + \lambda |u|^{p-2} u = 0$.Proc. Amer. Math. Society 109 (1990), 157-164. Zbl 0714.35029, MR 1007505
Reference: [8] Serin J.: Local behavior of solutions of quasilinear equations.Acta Math. 111 (1964), 247-302. MR 0170096
Reference: [9] Tolkdorf P.: Regularity for a more general class of quasilinear elliptic equations.J. Diff. Equations 51 (1984), 126-150. MR 0727034
Reference: [10] Trudinger N.S.: On Harnack type inequalities and their applications to quasilinear elliptic equations.Comm. Pure. Appl. Math. 20 (1967), 721-747. MR 0226198
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_1.pdf 236.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo