Previous |  Up |  Next

Article

Title: Indices of Orlicz spaces and some applications (English)
Author: Fiorenza, Alberto
Author: Krbec, Miroslav
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 433-451
.
Category: math
.
Summary: We study connections between the Boyd indices in Orlicz spaces and the growth conditions frequently met in various applications, for instance, in the regularity theory of variational integrals with non-standard growth. We develop a truncation method for computation of the indices and we also give characterizations of them in terms of the growth exponents and of the Jensen means. Applications concern variational integrals and extrapolation of integral operators. (English)
Keyword: Boyd indices
Keyword: Orlicz spaces
Keyword: Simonenko indices
Keyword: non-standard growth conditions
Keyword: variational integrals
Keyword: interpolation
Keyword: extrapolation
MSC: 26A12
MSC: 35A15
MSC: 35B10
MSC: 42B20
MSC: 46E30
MSC: 46E35
idZBL: Zbl 0937.46023
idMR: MR1485066
.
Date available: 2009-01-08T18:35:20Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118943
.
Reference: [1] Aïssaoui N.: Bessel potentials in Orlicz spaces.preprint. MR 1452563
Reference: [2] Di Benedetto E., Trudinger N.: Harnack inequalities for quasi-minima of variational integrals.Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 295-308. MR 0778976
Reference: [3] Bennett C., Sharpley R.: Interpolation of Operators.Academic Press (1988). Zbl 0647.46057, MR 0928802
Reference: [4] Boyd D.W.: The Hilbert transform on rearrangement invariant spaces.Canad. J. Math. 19 (1967), 599-616. Zbl 0147.11302, MR 0212512
Reference: [5] Boyd D.W.: Indices of function spaces and their relationship to interpolation.Canad. J. Math. 21 (1969), 1245-1254. Zbl 0184.34802, MR 0412788
Reference: [6] Boyd D.W.: Indices for the Orlicz spaces.Pacific J. Math. 38 (1971), 315-323. Zbl 0227.46039, MR 0306887
Reference: [7] Fiorenza A.: An inequality for Jensen means.Nonlinear Analysis, TMA 16 (1991), 191-198. Zbl 0737.46009, MR 1090790
Reference: [8] Fiorenza A., Krbec M.: A formula for the Boyd indices in Orlicz spaces.to appear. Zbl 0931.46025
Reference: [9] Fusco N., Sbordone C.: Higher integrability of the gradient of minimizers of functionals with nonstandard growth conditions.Comm. Pure Appl. Math. 43 (1990), 673-683. Zbl 0727.49021, MR 1057235
Reference: [10] Giaquinta M., Giusti E.: On the regularity of the minima of variational integrals.Acta Math. 148 (1982), 31-46. Zbl 0494.49031, MR 0666107
Reference: [11] Giaquinta M., Modica G.: Regularity results for some classes of higher order non linear elliptic systems.J. Reine Angew. Math. 311/312 (1979), 145-169. Zbl 0409.35015, MR 0549962
Reference: [12] Gustavsson J., Peetre J.: Interpolation of Orlicz spaces.Studia Math. 60 (1977), 33-59. Zbl 0353.46019, MR 0438102
Reference: [13] Kerman R., Torchinsky A.: Integral inequalities with weights for the Hardy maximal function.Studia Math. 71 (1982), 277-284. Zbl 0517.42030, MR 0667316
Reference: [14] Kokilashvili V., Krbec M.: Weighted inequalities in Lorentz and Orlicz spaces.World Scientific Singapore-New Jersey-London-Hong Kong (1991). Zbl 0751.46021, MR 1156767
Reference: [15] Krasnoselskiĭ M.A., Rutitskiĭ Ya.B.: Convex functions and Orlicz spaces.Noordhof Groningen (1961), English transl. from the first Russian edition Gos. Izd. Fiz. Mat. Lit., Moskva, 1958. MR 0106412
Reference: [16] Maligranda L.: Indices and interpolation.Dissert. Math. 234 (1984), 1-49. MR 0820076
Reference: [17] Matuszewska W., Orlicz W.: On certain properties of $\varPhi$ functions.Bull. Acad. Polon. Sci. 8 (1960), 439-443. Zbl 0101.09001, MR 0126158
Reference: [18] Migliaccio L.: Reverse Hölder from reverse Jensen inequalities.in Methods of Real Analysis and Partial Differential Equations, An International Workshop, Capri, Sept. 17-20, Liguori (1990), {129-134}.
Reference: [19] Montgomery-Smith S.J.: Boyd indices of Orlicz-Lorentz spaces.in Function spaces (Edwardsville, IL, 1994), Lecture Notes in Pure and Appl. Math., 172 Krzysztof Jarosz Marcel Dekker, Inc. New York (1995), 321-334. Zbl 0838.46024, MR 1352239
Reference: [20] Moscariello G.: Regularity results for quasiminima of functionals with non-polynomial growth.J. Math. Anal. Appl. 168 (1992), 500-510. Zbl 0768.49017, MR 1176006
Reference: [21] Muckenhoupt B.: Weighted norm inequalities for the Hardy maximal function.Trans. Amer. Math. Soc. 165 (1972), 207-226. Zbl 0236.26016, MR 0293384
Reference: [22] Persson L.E.: Interpolation with a parameter function.Math. Scand. 59 (1986), 199-222. Zbl 0619.46064, MR 0884656
Reference: [23] Sbordone C.: On some integral inequalities and their applications to the Calculus of Variations.Boll. Un. Mat. Ital., Ser. VI, Anal. Funz. Appl. V,C,1 (1986), 73-94. Zbl 0678.49008, MR 0897186
Reference: [24] Sbordone C.: Quasiminima of degenerate functionals with nonpolynomial growth.Rend. Sem. Mat. Fis. Milano 59 (1989), 173-184. MR 1159695
Reference: [25] Sbordone C.: Maximal inequalities and applications to regularity problems in the calculus of variations.to appear in Calculus of Variations, Applications and Computations, Pont-à-Mousson 1994 C. Bandle, J. Bemelmans, M. Chipot and J. Saint Sean Paulin, and I. Shafir Pitman Research Notes in Math. Series 326, 1995 230-244. Zbl 0835.35046, MR 1419348
Reference: [26] Simonenko I.B.: Interpolation and extrapolation in Orlicz spaces (in Russian).Mat. Sb. (N. S.) 63 (1964), {536-553}. MR 0199696
Reference: [27] Talenti G.: Boundedness of Minimizers.Hokkaido Math. J. 19 2 (1990), 259-279. Zbl 0723.58015, MR 1059170
Reference: [28] Zippin M.: Interpolation of operators of weak type between rearrangement invariant spaces.J. Funct. Anal. 7 (1971), 267-284. MR 0412793
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_2.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo