| Title:
             | 
On the Noetherian type of topological spaces (English) | 
| Author:
             | 
Peregudov, S. A. | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
38 | 
| Issue:
             | 
3 | 
| Year:
             | 
1997 | 
| Pages:
             | 
581-586 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
The Noetherian type of topological spaces is introduced. Connections between the Noetherian type and other cardinal functions of topological spaces are obtained. (English) | 
| Keyword:
             | 
Noetherian type | 
| Keyword:
             | 
rank weight | 
| MSC:
             | 
54A25 | 
| MSC:
             | 
54D30 | 
| idZBL:
             | 
Zbl 0937.54003 | 
| idMR:
             | 
MR1485079 | 
| . | 
| Date available:
             | 
2009-01-08T18:36:26Z | 
| Last updated:
             | 
2012-04-30 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/118956 | 
| . | 
| Reference:
             | 
[1] Arhangel'skii A.V.: On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences.Soviet Math. Dokl. 12 (1971), 1253-1257. MR 0119188 | 
| Reference:
             | 
[2] Bir'ukov P.A.: Ranks of families of sets and properties of topological spaces (in Russian).DAN SSSR 4[257] (1981), 777-779. MR 0612564 | 
| Reference:
             | 
[3] Gruenhage G., Nyikos P.: Spaces with bases of countable rank.Gen.Top. and Appl. 8 (1978), 233-257. Zbl 0412.54034, MR 0494007 | 
| Reference:
             | 
[4] Malyhin V.I.: On Noetherian spaces (in Russian).Seminar of Gen. Topology, Moscow University, 1981 pp.51-58. | 
| Reference:
             | 
[5] Peregudov S.A.: On $\sqcap$-uniform bases and $\pi$-bases.Soviet Math. Dokl. 17 (1976), 1055-1059. | 
| Reference:
             | 
[6] Peregudov S.A., Shapirovskii B.E.: A class of compact spaces.Soviet Math. Dokl. 17 (1976), 1296-1300. | 
| Reference:
             | 
[7] Shapirovskii B.E.: On $\pi$-character and $\pi$-weight of bicompact (in Russian).DAN SSSR 4[223] (1975), 799-802. MR 0410632 | 
| . |