Previous |  Up |  Next

Article

Title: A basic approach to the perfect extensions of spaces (English)
Author: Nordo, Giorgio
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 38
Issue: 3
Year: 1997
Pages: 571-580
.
Category: math
.
Summary: In this paper we generalize the notion of {\it perfect compactification} of a Tychonoff space to a generic extension of any space by introducing the concept of {\it perfect pair}. This allow us to simplify the treatment in a basic way and in a more general setting. Some [S$_1$], [S$_2$], and [D]'s results are improved and new characterizations for perfect (Hausdorff) extensions of spaces are obtained. (English)
Keyword: extension
Keyword: maximal extension
Keyword: perfect extension
Keyword: perfect pair
MSC: 54D35
idZBL: Zbl 0937.54014
idMR: MR1485078
.
Date available: 2009-01-08T18:36:22Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118955
.
Reference: [D] Diamond B.: A characterization of those spaces having zero-dimensional remainders.Rocky Mountain Journal of Math. 15 1 (1985), 47-60. Zbl 0572.54022, MR 0779251
Reference: [E] Engelking R.: General Topology.Monografie Matematyczne, Warzawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [PW] Porter J.R., Woods R.G.: Extensions and absolutes of Hausdorff spaces.Springer, 1988. Zbl 0652.54016, MR 0918341
Reference: [S$_1$] Skljarenko E.G.: On perfect bicompact extensions.Dokl. Akad. Nauk SSSR 137 (1961), 39-41 Soviet Math. Dokl. 2 (1961), 238-240. MR 0121777
Reference: [S$_2$] Skljarenko E.G.: Some questions in the theory of bicompactifications.Izv. Akad. Nauk. SSSR, Ser. Mat. 26 (1962), 427-452 Trans. Amer. Math. Soc. 58 (1966), 216-244. MR 0143174
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_38-1997-3_14.pdf 212.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo